三角形内角和教案
作为一名默默奉献的教育工作者,常常需要准备教案,教案有利于教学水平的提高,有助于教研活动的开展。那么写教案需要注意哪些问题呢?以下是小编帮大家整理的三角形内角和教案,供大家参考借鉴,希望可以帮助到有需要的朋友。

三角形内角和教案1
教学要求:●通过动手操作,使学生理解并掌握三角形的内角和是180°的结论。●能运用三角形的内角和是180°这一规律,求三角形中未知角的度数。●培养学生动手动脑及分析推理能力。
教学重点:三角形的内角和是180°的规律。
教学难点:使学生理解三角形的内角和是180°这一规律。
教学用具:每个学生准备锐角三角形、直角三角形、钝角三角形纸片各一张,量角器。
教学过程:
一、复习准备
1.三角形按角的不同可以分成哪几类?
2.一个平角是多少度?1个平角等于几个直角?
3.如图,已知∠1=35°,∠2=75°,求∠3的度数。
二、教学新课
1.投影出示一组三角形:(锐角三角形、钝角三角形、直角三角形)。三角形有几个角?老师指出:三角形的这三个角,就叫做三角形的三个内角。(板书:内角)
2.三角形三个内角的度数和叫做三角形的内角和。(板书课题:三角形的内角和)今天我们一起来研究三角形的内角和有什么规律。
3.以小组为单位先画4个不同类型的'三角形,利用手中的工具分别计算三角形三个内角的和各是多少度?
4.指名学生汇报各组度量和计算的结果。你有什么发现?
5.大家算出的三角形的内角和都接近180°,那么,三角形的内角和与180°究竟是怎样的关系呢?就让我们一起来动手实验研究,我们一定能弄清这个问题的。
6.刚才我们计算三角形的内角和都是先测量每个角的度数再相加的。在量每个内角度数时只要有一点误差,内角和就有误差了。我们能不能换一种方法,减少度量的次数呢?
提示学生,可以把三个内角拼成一个角,就只需测量一次了。
7.请拿出桌上的直角三角形纸片,想一想,怎样折可以把三个角拼在一起,试一试。
8.三个角拼在一起组成了一个什么角?我们可以得出什么结论?(直角三角形的内角和是180°)
9.拿一个锐角三角形纸片试试看,折的方法一样。再拿钝角三角形折折看,你发现了什么?(直角三角形和钝角三角形的内角和也是180°)
10.那么,我们能不能说所有三角形的内角和都是180°呢?为什么?(能,因为这三种三角形就包括了所有三角形)11.老师板书结论:三角形的内角和是180°。
12.一个三角形中如果知道了两个内角的度数,你能求出另一个角是多少度吗?怎样求?
13.出示教材85页做一做。让学生试做。
14.指名汇报怎样列式计算的。两种方法均可。
∠2=180°-140°-25°=15°
∠2=180°(140°+25°)=15°
三、巩固练习
1.88页第9题
这一题是不是只知道一个角的度数?另一个角是多少度,从哪看出来的?独立完成,集体订正。
直角三角形中的一个锐角还可以怎样算?
2、88页第10题
①等腰三角形有什么特点?(两底角相等)
②列式计算180°-70°-70°=40°或180°-(70°×2)=40°
2.88页第10题
①连接长方形、正方形一组对角顶点,把长方形、正方形分成两个什么图形?
②一个三角形的内角和是180°,两个三角形呢?
布置作业
图形的拼组
1小组同学合作,用三角形拼四边形
让学生明确:
不是任意两个三角形就能拼成四边形
两个完全一样的三角形能拼成四边形
两个相同的直角三角形能拼成长方形
两个相同的锐角或钝角三角形能拼成平行四边形
用三个相同的三角形拼成了梯形
2用三角形拼出美丽的图案
三角形内角和教案2
教学目标
1、通过创设生动、有趣的操作情境,使学生了解三角形的内角和是180度,初步感知计算多边形内角和的公式,并会运用这个性质灵活解决一些简单的实际问题。
2、在猜测、实践、验证等过程中,进一步培养学生的猜想、验证、及动手能力。
3、使学生联系实际感受在日常生活中的应用,能积极参与操作、实验等学习活动,能主动与他人合作交流并获得积极的情感体验。
重点难点
感受并掌握三角形内角和等于180度。
实践操作验证这个特性。
教学准备
三角板、三个三角形纸片,正方形纸。
教学过程
教学环节
过程目标
教师活动
学生活动
反思
计算三角尺三个内角的和。
自主探索,解决问题
试一试
巩固提高
板书设计:
通过计算每块三角尺的内角和引发学生思考“是不是其他三角形的内角和也是180度?由此激发学生的探知欲望。
适当指导把三角形的三个角拼在一起的操作示范,可以由教师先示范,再让学生模仿着做一做,培养学生的动手能力,并进一步使学生体会三角形的内角和是180度。
通过练习使学生的新知得到进一步的巩固和加深。
在学习的过程中进一步激发学生探索数学规律的兴趣,初步感知计算多边形内角和的公式。
一、计算三角尺三个内角的和。
出示三角尺中的一个,提问:谁来说说三角尺上的三个角分别是多少度?
引导学生说出90度、60度、30度。
出示另一个三角尺,引导学生分别说出三个角的度数:90度、45度、45度。
提问:请同学们任选一个三角尺,算出他们三个角一共多少度?
学生计算后指名回答。
师小结:三角尺三个角的和是180度。
二、自主探索,解决问题
提问:是不是任一个三角形三个角的和都是180度呢?
请同学们在自备本上任画一个三角形,量出它们三个角分别是多少度,再求出它们的和,然后小组内交流。
学生小组活动,教师了解学生情况,个别同学加以辅导。
全班交流:让学生分别说出三个角的度数以及它们的和。
提问:你发现了什么?
小结:任何一个三角形三个角的和都是180度。利用三角形的这一性质,我们可以解决许多问题。
三、试一试
要求学生先计算,再用量角器量,最后比较结果是否相同?
让学生说说计算的方法。
教师说明:即使结果不完全一样,是因为测量的结果存在误差,我们还是以计算的结果为准。
四、巩固提高
完成想想做做的题目。
第1题
要求学生用量角器量出结果,和计算的`结果想比较。
第2题
指导学生看图,弄清拼成的三角形的三个内角指的是哪三个角。
计算三角形三个角的内角和,帮助学生进一步理解:三角形三个内角的和是
180度。
第3题
通过操作、计算,使学生认识到:不管三角形的大小怎样变化,它的内角和是不会变化的。
第4、5、6题
引导学生运用三角形的分类及三角形内角和的有关知识解决有关问题,重点培养学生灵活运用知识解决问题的能力。
三角形的内角和
三角形的内角和是180度
观察之后
指名回答
计算后指名回答。
师生小结
在自备本上任画一个三角形,量出它们三个角分别是多少度,再求出它们的和,然后小组内交流。
学生小组活动
全班交流:让学生分别说出三个角的度数以及它们的和。
小结
先计算,再用量角器量,最后比较结果是否相同?
让学生说说计算的方法。
学生独立计算,交流算法。
看图,弄清拼成的三角形的三个内角指的是哪三个角。
计算三角形三个角的内角和
通过操作、计算,使学生认识到:不管三角形的大小怎样变化,它的内角和是不会变化的。
有许多同学在把每个三角形的3个角拼在一起时,不知道如何拼,有些无从下手,教师一定要指导好。其实我觉得还不如让学生把每个三角形内的三个角都剪下来,然后拼在一起,更清楚。
三角形内角和教案3
尊敬的各位评委老师:
大家好!今天我很高兴也很荣幸能有这个机会与大家共同交流,在深入钻研教材,充分了解学生的基础上,我准备从以下几个方面进行说课:
一、教材分析
“三角形的内角和”是三角形的一个重要性质,它有助于学生理解三角形内角之间的关系,是进一步学习几何的基础。
二、教学目标
1、知识与技能:明确三角形的内角的概念,使学生自主探究发现三角形内角和等于180°,并运用这一规律解决问题。
2、过程和方法:通过学生猜、量、拼、折、观察等活动,培养学生发现问题、提出问题、分析问题和解决问题的能力。
3、情感与态度:使学生感受数学图形之美及转化思想,体验数学就在我们身边。
三、教学重难点
教学重点:动手操作、自主探究发现三角形的内角和是180°,并能进行简单的运用。
教学难点:采用多种途径验证三角形的内角和是180°。
四、学情分析
通过前面的学习,学生已经掌握了三角形的一些基础知识,会量角,部分学生已经知道三角形内角和是180°,但不知道怎样得出这个结论。
五、教学法分析
本节课采用自主探索、合作交流的教学方法,学生自主参与知识的构建。领悟转化思想在解决问题中的'应用。
六、课前准备
1、教师准备:多媒体课件、三角形教具。
2、学生准备:锐、直、钝角三角形各两个,量角器、剪刀。
七、教学过程
(一)、创设情境,激趣导入
导入:“同学们,有三位老朋友已经恭候我们多时了。“(出示三角形动画课件),让学生依次说出各是什么三角形。
课件分别闪烁三角形三个内角,并介绍:“这三个角叫做三角形的内角,把三个角的度数加起来,就是三角形的内角和。请学生画一个三角形,要求:有两个直角。为什么不能画,问题在哪呢?这节课我们就一起来探究三角形的内角和。板书课题。
(二)、自主探究、合作交流
1、探索特殊三角形内角和
拿出自己的一副三角板,同桌之间互相说一说各个角的度数。
三角形内角和是多少度呢?指名汇报。90°+30°+60°=180°
90°+45°+45°=180°
从刚才两个三角形内角和的计算中,你发现了什么?
2、探索一般三角形的内角和
一般三角形的内角和是多少度?猜一猜。你们能想办法证明吗?接下来,我们采用小组合作的方式进行探究,看看哪个组的方法多而且富有新意。
3、汇报交流
请小组代表汇报方法。
1)量:你测量的三个内角分别是多少度?和呢?(有不同意见)
没有统一的结果,有没有其他方法?
2)剪―拼:把三角形的三个内角剪下来拼在一起,成为一个平角,利用平角是180°这一特点,得出结论。(学生尝试验证)
3)折拼:学生边演示边汇报。把三角形的三个内角都向内折,把这三个内角拼组成一个平角。所以得出三角形的内角和是180°。(学生尝试验证)
4)教师课件验证结果。
请看屏幕,老师也来验证一下,是不是和你们的结果一样?播放课件。我们可以得到一个怎样的结论?
学生回答后教师板书:三角形的内角和是180°
为什么有的小组用测量的方法不能得到180°?(误差)
4、验证深化
质疑:大小不同的三角形,它们的内角和会是一样吗?(一样)
谁能说一说不能画出有两个直角的三角形的原因?
(三)、应用规律,解决问题:
揭示规律后,学生要掌握知识,就要通过解答实际问题。
1、为了让学生积极参与,我设计了闯关的活动来激励学生的兴趣。闯关成功会获得小奖章。
第一关:基础练习,要求学生利用“三角形内角和是180°”这一规律在三角形内已知两个角,求第三个角(课件出示)
第二关,提高练习,
①已知等腰三角形的底角,求顶角。②求等边三角形每个角的度数是多少。直角三角形已知一个锐角,求另一个。
让学生灵活应用隐含条件来解决问题,进一步提高能力。
2、小组合作练习,完成相应做一做。
(四)、课堂总结,效果检测。
一节成功的好课要有一个好的开头,更要有一个完美的结尾,数学是使人变聪明的学科,通过这节课的学习,你收获了什么?学生们畅所欲言。接下来老师要检查大家的学习效果,学生完成答题卡,组长评判,集体汇报。
(五)作业课下继续探究三角形,看你有什么新发现。
八、板书设计
通过这样的设计,使学生不仅学到科学的探究方法,而且体验到探索的乐趣,使学生在自主中学习,在探究中发现,在发现中成长。以上便是我对《三角形的内角和》这一堂课的说课,谢谢大家!
三角形内角和教案4
【设计理念】
遵循由特殊到一般的规律进行探究活动是这节课设计的主要特点之一。《数学课程标准》指出,让学生学习有价值的数学,让学生带着问题、带着自己的思想、自己的思维进入数学课堂,对于学生的数学学习有着重要作用。因此,我尝试着将数学文本、课外预习、课堂教学三方有机整合,在质疑、解疑、释疑中展开教学,培养学生提出问题、分析问题和解决问题的探究能力。
【教材分析】
三角形的内角和是三角形的一个重要特征。本课是安排在学习三角形的概念及分类之后进行的,它是学生以后学习多边形的内角和及解决其它实际问题的基础。学生在掌握知识方面:已经掌握了三角形的分类,比较熟悉平角等有关知识;能力方面:经过三年多的学习,已具备了初步的动手操作能力和主动探究能力以及合作学习的习惯。因此,教材很重视知识的探索与发现,安排了一系列的实验操作活动。教材呈现教学内容时,不但重视体现知识的形成过程,而且注意留给学生充分进行自主探索和交流的空间,为教师灵活组织教学提供了清晰的思路。概念的形成没有直接给出结论,而是通过量、算、拼等活动,让学生探索、实验、发现、讨论交流、推理归纳出三角形的内角和是180°。
【学情分析】
学生已经掌握三角形特性和分类,熟悉了钝角、锐角、平角这些角的知识,大多数学生已经在课前通过不同的途径知道“三角形的内角和是180度”的结论,但不一定清楚道理,所以本课的设计意图不在于了解,而在于验证,让学生在课堂上经历研究问题的过程是本节课的重点。四年级的学生已经初步具备了动手操作的意识和能力,并形成了一定的空间观念,能够在探究问题的过程中,运用已有知识和经验,通过交流、比较、评价寻找解决问题的途径和策略。
【学习目标】
1.通过测量、剪、拼等活动发现、探索和发现“三角形内角和是180°”。
2.学会根据“三角形内角和是180°”这一知识求三角形中一个未知数的度数。
3.在课堂活动中培养学生的观察、归纳、概括能力和初步的空间想象力。并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透“转化”数学思想。
4.使学生体验成功的喜悦,激发学生主动学习数学的兴趣。
【教学重点】
探索和发现“三角形的内角和是180°”。
【教学难点】
运用三角形的内角和解决实际问题。
【教学准备】
教师:多媒体、剪好的不同类型的三角形。
学生:量角器、剪刀、剪好的不同类型的三角形。
【教学过程】
一、创设情景,引出问题
1.猜谜语。
师:同学们,你们喜欢猜谜语吗?今天老师给你们带来了一则谜语。请同学们读一下(出示谜语)。
师:打一几何图形。猜猜看!
学生猜谜语。
根据学生的回答,出示谜底。
师:真是三角形,同学们的反应真快!
2.复习三角形的内容。
其实,三角形我们并不陌生,它是一种特别的平面图形。关于三角形,你们已经掌握了哪些知识?
指名学生回答。
(当学生回答出三角形有3个顶点、3条边和3个角时,请这名学生到台上分别指出三角形的3个角,并标出角。)
3.引出课题。
师:同学们知道的还真不少,可见你们平时学习很用功。知道吗?其实三角形的这三个角就是三角形的三个内角,而这三个角的度数和就是三角形的内角和。你们知道三角形的内角和是多少度吗?今天这节课就让我们一起走进三角形内角和,探索其中的奥秘。
(板书课题:三角形的内角和)
二、探究新知
1.讨论、交流验证知识的方法。
师:那同学们用什么方法来研究三角形的内角和呢?赶紧商量一下。(同桌交流)
学生汇报:①用量的方法;②用拼的方法;③用折的方法...
2.操作验证。
师:同学们的点子还真多!现在请同学们拿出准备好的三角形,
选1个自己喜欢的三角形,选择自己喜欢的方法进行验证。(或说研究)等研究完了我们再交流,发现了什么,好吗?好,现在开始!
3.学生汇报。
师:如果你们已经完成了,就把你的小手举起来示意老师。老师有点迫不及待了,想赶紧分享一下你们研究的成果。谁先来说?
学生汇报,教师适时板书。
①用量的方法:
指名学生汇报度量的结果,教师板书。(指两名学生汇报)
教师白板演示测量方法,并计算和板书出结果。
教师:同样是测量的方法,有的同学得了180,有的不是180°,为什么会出现这种情况?(指名学生说)
师:可能我们测量的时候会有误差,但是同学们选择比较精确的测量工具,使用正确的测量方法,还是可以得到精确的结果。看来这个办法不能使人很信服,有没有别的方法验证?
②用拼的'方法
a.学生汇报拼的方法并上台演示。
我这里也有一个钝角三角形,请两名同学上台演示。
b.请大家四人小组合作,用他的方法验证其它三角形。
c.展示学生作品。
d.师展示。
师:我们用量、拼得到了180度,还有什么方法?
③用折的方法
师:还想向同学们请同学们看一看他是怎么折的(演示)。
师:刚才我们用量的方法、拼的方法和折的方法研究了锐角三角形、直角三角形和钝角三角形内角和,得出什么结论了?
教师根据学生板书:(任意)三角形的内角和是180度。
④数学文化
师:除了我们这节课大家想到的方法,还有很多方法也能验证三角形的内角和是180°,到初中我们还要更严密的方法证明三角形的内角和是180°。其实,早在300多年前就有一位伟大的数学家,用科学的数学方法见证了任意三角形的内角和都是180度。这位伟大的数学家就是帕斯卡(出示帕斯卡),他是法国著名的数学家、物理学家。他在12岁时发现了三角形内角和定律,17时写出了《圆锥截线论》19岁设计了第一架计算机。
三、巩固练习
数学家发现了知识,今天我们也能够总结出知识。你们棒不棒?真厉害,接下来白老师要考考你们。眼睛看好啦!
1.出示:我是小判官(对的打“√”错的“×”。)
强调:把两个小三角形拼在一起,问:大三角形的内角和是多少度?
教师:为什么不是360°?学生回答。
2.接下来我要奖励你们一个游戏:《帮角找朋友》
3.求未知角的度数。
师:接下来,利用三角形的内角和我们来解决一些相关的问题吧!
①出示第一个三角形,学生尝试独立完成,教师巡视。
教师:刚才,我们利用了三角形的什么?
②教师:如果一个都不知道,或只知道1个角,你能知道三角形各角的度数吗?求出下面三角形各角的度数。
a.我三边相等;b.我是等腰三角形,我的顶角是96°。c.我有一个锐角是40°。
教师:如果我们去求一个三角形内角的度数的时候,首先我们要去观察三角形,找出它的特点,找出它给出的已知角的度数,然后再去计算三角形未知的内角的度数。
四、拓展延伸
师:看来三角形内角和的知识难不倒你们了,我们来一个挑战题。你们敢接受挑战吗?(出示四边形)你知道它的内角和是多少吗?指名生回答,并说出理由。同学们,你们能用今天学的知识算出它的内角和吗?
接着让学生尝试求5边形和6边形的内角和。
小结:求多边形的内角和,可以从一个顶点出发,引出它的对角线,这样就把这个多边形分割成了N个三角形,它的内角和就是N个180°
五、课堂总结。
师:这节课你有什么收获?
学生自由发言。
师生交流后总结:知道了三角形的内角和是180度,根据这个规律知道可以用180°减去两个内角的度数,求出第三个未知角的度数。
同学们,只要我们在日常的学习中,细心观察,大胆质疑,认真研究,一定会有意想不到的收获。
六、作业布置
完成教材练习十六的第1、3题。
七、板书设计:
( 任意)三角形的内角和是180°
∠1+∠2+∠3=180°
度量 剪拼 折拼
三角形内角和教案5
教学目标:
1、让学生亲自动手,通过量、剪、拼等活动发现、证实三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。
2、让学生在动手获取知识的过程中,培养学生的创新意识、探索精神和实践能力。并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透“转化”数学思想。
3、使学生体验成功的喜悦,激发学生主动学习数学的兴趣。
教学重点:
探究发现和验证“三角形的内角和180度”这一规律的过程,并归纳总结出规律。
教学难点:
对不同探究方法的指导和学生对规律的灵活应用。
教学准备:
多媒体课件、学具。
教学过程
一、创设情境,激趣引入。
认识三角形内角
1、提问:我们已经认识了什么是三角形,谁能说出三角形有什么特点?
2、请看屏幕(课件演示三条线段围成三角形的过程)。三条线段围成三角形后,在三角形内形成了三个角,(课件分别闪烁三个角及的弧线),我们把三角形里面的这三个角分别叫做三角形的内角。三个内角的度数和就是三角形的内角和。
(设计意图:让学生整体感知三角形内角和的知识,有效地避免了新知识的`横空出现。)
二、动手操作,探究新知。
1、猜想
先后出示两个直角三角形,让学生说出各个内角的度数,并求出这两个直角三角形的内角和。
提问:从刚才的计算结果中,你想说些什么呢?
(引出猜想:三角形的内角和是180°)
(设计意图:引导学生提出合理猜测:三角形的内角和是180°。)
2、验证
这只是我们的猜想,事实上是不是这样的呢?还需要我们进行验证。想想,你有什么办法验证三角形的内角和是不是180°呢?
(引导学生说出量一量、拼一拼、画一画等方法)
提问:现实中的三角形有千千万万,是不是我们都要对其进行一一验证呢?
引导学生回答出只要在锐角三角形、钝角三角形和直角三角形三种三角形分别进行验证就行。
组织学生以小组为单位进行动手操作验证。(每个小组都有三种三角形,让学生选择一种三角形,用自己喜欢的方法进行验证,把验证的过程和结果在小组里进行讨论交流。最后,小组派代表进行汇报)
(设计意图:让学生带着问题动手、动口、动脑,调动多种感官参与数学学习活动,通过操作、剪拼、验证,让学生去探索、去实验、去发现,从而让学生在动手操作积极探索的活动过程中掌握知识,积累数学活动经验,发展空间观念和推理能力。)
3、总结
通过验证,你们得出了什么结论呢?(板书:结论:三角形的内角和是180°)
三、应用延伸,解决问题。
1、求三角形中一个未知角的度数。
(1)在三角形中,已知∠1=70°,∠2=50°,求∠3。
(2)在三角形中,已知∠1=78°,∠2=44°,求∠3。
(3)选算式:(1)∠A=180°-55°(2)∠A=180°-90°-55°(3)∠A=90°-55°
(分别请同学们板演,并说出解题思路。)
2、判断
(1) 一个三角形的三个内角度数是:80° 、75° 、 24° 。 ( )
(2)三角形越大,它的内角和就越大。 ( )
(3)一个三角形至少有两个角是锐角。 ( )
(4)钝角三角形的两个锐角和大于90°。 ( )
(请同学回答,并说出判断的依据)
3、解决生活实际问题。
爸爸给小红买了一个等腰三角形的风筝,它的一个底角是70°,它的顶角呢?
(让学生结合题意画图,再说出答题的思路)
4、拓展练习。
利用三角形内角和是180°,求出下面四边形、六边形的内角和?
图 形
名 称 三角形 四边形 五边形 六边形
有几个三角形
内角和
(设计意图:习题是沟通知识联系的有效手段。在本节课的四个层次的练习中, 能充分注意沟通知识之间的内在联系, 使学生从整体上把握知识的来龙去脉和纵横联系,逐步形成对知识的整体认知, 构建自己的认知结构, 从而发展思维, 提高综合运用知识解决问题的能力。)
四、全课总结,梳理反思。
今天你学到了哪些知识?是怎样获取这些知识的?你感觉学得怎么样?
(设计意图:引导学生回顾与反思学习过程,进一步梳理知识,优化认知,感悟学习方法,从学会走向会学,带着收获的喜悦结束本节课的学习。)
五、板书设计:
三角形的内角和
猜想:三角形的内角和是180°。
验证:量一量、拼一拼、画一画
直角三角形
锐角三角形
钝角三角形
结论:三角形的内角和是180°。
三角形内角和教案6
学科:数学
年级/册:4年级下册
教材版本:人教版
课题名称:4年级下册第五单元《三角形的内角和》
教学目标:
掌握探究方法(猜想—验证—归纳总结),学会用“转化”的数学思想探究三角形内角和。
重难点分析
重点分析:教材在呈现教学内容时,不但重视知识的形成过程,而且注意留给学生充分进行自主探索和交流的空间。三角形的内角和的性质没有直接给出,而是提供了丰富多彩的动手实践的素材,让学生通过探索、实验、讨论、交流而获得,从而让学生在动手操作,积极探索的活动过程中掌握知识,积累数学经验,同时发展空间观念和推理能力,不断提高自己的思维水平。
难点分析:通过近四年的数学学习,学生已初步掌握了一些学习数学的基本方法,具备了一定的动手操作、观察比较和合作交流的能力。但是围绕数学问题开展初步的讨论活动,能比较清楚的`表达自己的意见,认真倾听他人的发言,这些初步的数学交流能力还欠缺。
教学方法:
1、探索过程中培养学生的动手实践能力、协作能力及创新意识和探究精神,发展学生的空间思维能力,同时使学生养成独立思考的习惯。
2、在活动中,让学生体验主动探究数学规律的乐趣,体验学数学的价值,激发学生学习数学的热情。
教学过程
导入:各位同学大家好,今天由我来和大家一起学习人教版四年级下册《三角形的内角和》,我们前面学习和了解了三角形的相关知识,请大家说说三角形按角分,可以分成哪几类?知识讲解(难点突破)
例五:画出几个不同类型的三角形。量一量,算一算,三角形3个内角的和各是多少度?解决这个问题的时候,我们先来了解一下什么是三角形的内角和?
讲解:三角形内两条边所夹的角就叫做这个三角形的内角。每个三角形都有三个内角,这三个内角的度数加起来就是三角形的内角和。
(一)量一量:我们如何解决这个问题呢?
同学们请看,这里有一个直角三角形,我们先分别量一量这个直角三角形三个内角的度数并标注。90°30°60°现在我们将这三个内角的度数加起来等于180度°通过测量计算发现这个直角三角形内角和都是180°,是不是所有直角三角形的内角和都是180°呢?同学们你们也来量一量你刚才画的直角三角形3个内角的度数,算一算是不是也和老师的结果一样呢?注意在测量要认真,力求准确。停顿数秒从刚才的测量和计算结果中,你发现了什么?你是不是发现直角三角形的内角和都是180°当然有些同学的测量结果不是等于180°,这是我们在测量时,由于在测量工具、测量方法等各方面的原因,使我们的测量结果存在一定的误差。实际上,直角三角形三角形内角和就等于180°。
(二)
1、提出猜想:刚才我们通过测量和计算发现了直角三角形内角和等于180,那你能不能大胆的猜测一下:锐角三角形内角和,钝角三角形的内角和是不是也是180°呢?
2、动手操作,验证猜想这时每个同学的心中都有了猜测的答案,这个猜想是否成立呢?除了用量角器量一量,你还有其他办法来验证吗?聪明的你,是不是想到好办法了,那就快快动手吧!
方法:
A、拼一拼的方法
B、折一折的方法把三角形的角1折向它的对边,使顶点落在对边上,然后另外两个角相向对折,使它们的顶点与角1的顶点互相重合,通过折叠的方法,三角形的三个内角折到一起正好组成一个平角,所以也能证明三角形的内角和是180°。
同学们我们通过量一量拼一拼折一折,发现无论是直角三角形,锐角三角形钝角三角形,它们内角和都等于180度,我们通过动作操作,折一折,拼一拼,把三角形的三个内角转换成了一个平角,成功的得到了这个结论,让我们为自己的成功鼓掌!齐读结论。(板书:得到结论)
小结:通过剪拼的方法,把三个角剪下来,拼在一起,三角形的三个内角正好拼成一个平角,因为平角是180°,所以三角形的内角和是180°三角形的形状和大小虽然不同,但是三角形的内角和都是180度。说明三角形的内角和和他的形状大小无关
课堂练习(难点巩固)
总结:我们今天用量一量,折一折,拼一拼的方法得到了三角形的内角和等于180°这一结论,希望同学们在在以后的学习中大胆探索,去发现数学的奥秘吧!我们今天的课程就到这里了,同学们再见!
三角形内角和教案7
教学内容
人教版小学数学第八册第五单元第85页例5
任务分析
教材分析: 《三角形的内角和》是义务教育课程标准实验教科书(数学)四年级下册第五单元《三角形》中的一个教学内容。这部分内容是在学生学习了角的度量,角的分类,三角形的认识,三角形的分类的基上进行教学的。它是三角形的一个重要性质,有助于学生理解三角形的三个内角之间的关系,也是进一步学习的基础。教材通过实际操作,引导学生用实验的方法探索并归纳出这一规律,即任意一个三角形,它的内角和都是180度。教材在编写上也深刻的体现出了让学生探究的特点,通过动手操作探究发现三角形内角和为180度。教学内容的核心思想体现在让学生经历猜想—验证—结论的过程,来认识和体验三角形内角和的特点。
学情分析:通过前面的学习,学生已经掌握了三角形的一些基础知识,会用工具量角、画角,具备了探索三角形内角和的知识与基础技能。在四年级上册《角的度量》的学习中,学生有接触到两把三角尺的内角和是180°;并在相关的补充习题和数学练习册的练习中,也有要求测量任意三角形的三个内角的度数并求出它们的和的练习,很多学生已经知道了三角形的内角和是180°。但是要真正理解和掌握需要进行验证,因此,学生在这节课上的'主要任务是通过实验操作验证三角形的内角和是180°。
教学目标
1、通过实验、操作、推理归纳出三角形内角和是180°。
2、能运用三角形的内角和是180°这一规律,求三角形未知角的度数并运用解决实际生活问题。
3、通过拼摆,感受数学的转化思想。
教学重点
探究发现和验证“三角形的内角和180度”。
教学难点
验证三角形的内角和是180度。
教学准备
多媒体课件,锐角三角形、直角三角形、钝角三角形,剪刀,量角器等。
教学过程
一、复习旧知,学习铺垫
1、一个平角是多少度?等于几个直角?
2、如下图,已经∠ 1=35°,∠2=78°,求∠3是多少度?
二、探究新知,理解规律
1、说明三角形的三个内角和
说出手中三角形的类型(锐角三角形,直角三角形,钝角三角形)并说出三角形有几个角?
师(指出):三角形的这三个角叫做三角形的三个内角,这三个内角的度数和叫做三角形的内角和。
板书课题:“三角形的内角和”。
揭示课题:今天我们一起来探究三角形的内角和有什么规律。
2、探究三角形的内角和规律
探究1:量一量,算一算
以小组为单位,用量角器计算出三种三角形的内角和各是多少度?
生讨论汇报,并引导学生发现:三角形的内角和接近180°。
师:三角形的内角和接近180°,那它到底与180° 有怎样的关系呢?
学生预设:有学生可能会说出三角形的内角和就是180°,这时老师可以提问,为什么就是180°?我们要进行验证,你有什么办法呢?
探究2:摆一摆,拼一拼
引导:我们刚刚每个三角形都量了三次角,每一次度量都有误差,所以量出来的内角和有误差。能不能换一种方法减少度量的次数,减少误差呢?
生可能很难想到,可以提示学生:把三个内角拼成一个角就只要量一次角。让我们一起动手做一做
如图:
(1)
锐角的三个内角拼成了一个平角,引导学生说出:锐角三角形的内角和是180°.
(2)
让学生小组合作用同样的方法,发现:直角三角形的内角和也是180°.
(3)
让学生独立用同样的方法,发现:钝角三角形的内角和也是180°.
引导学生归纳:三角形的内角和是180°。
是不是所有的三角形的内角和都是180°呢? (是,因为这三类三角形包括了所有三角形。)
板书:三角形的内角和是180°
三、巩固练习,应用规律
1、在一个三角形中,∠1=140°,∠3=25°,你能求出∠2的度数吗?
学生独立完成,并说出原因:因为三角形的内角和是180°,也就是∠1+∠2+∠3=180°,借助图像
∠2 =180°-∠1-∠3 或 ∠2 =180°-(∠1+∠3)
= 180°-140°-25° =180°-(140°+25°)
=40°-25° =180°-165°
=15° =15°
2、一个等腰三角形的顶角是80°,它的两个底角各是多少度?
学生分析:因为等腰三角形的两个底角相等,又因为三角形的内角和是180°,所以
(180°-80°)÷2
=100°÷2
=50°
四、拓展练习,深化规律
1、求出下面各角的度数。
(1) (2)
2、判断
(1)三角形任意两个内角的和大于第三个角。( )
(2)锐角三角形任意两个内角的和大于直角。( )
(3)有一个角是60°的等腰三角形不一定是等边三角形。( )
3、下面是两块三角形的玻璃打碎后留下的残片,你知道它们原来各是什么三角形吗?
( ) ( )
五、课堂小结,分享提升
1、谈谈这节课你有什么收获?
2、课后思考题
三角形的内角和是180°,那长方形、正方形的内角和呢?(根据三角形的内角和是180°求,参考课本88页第12题,完成89页16题)
板书设计
三角形内角和教案8
教学目标:
知识与技能目标:
1、会用平行线的性质与平角的定义证明三角形内角和等于180o;
2、能用三角形内角和等于180o进行角度计算和简单推理,并初步学会利用辅助线解决问题,体会转化思想在解决问题中的应用。
过程与方法目标:
1、通过拼图实验、合作交流、推理论证的过程,体现“做中学”,发展学生的合情推理能力和逻辑思维能力,初步获得科学研究的体验;
2、掌握三角形内角和定理,并初步学会利用辅助线证题,同时培养学生观察、猜想和论证能力。
情感态度与价值观目标:
通过操作、交流、探究、表述、推理等活动,培养学生的合作精神,体会数学知识内在的.联系与严谨性,鼓励学生大胆提出疑问,培养学生良好的学习习惯。
重点:
三角形内角和定理的证明及其简单的应用;
难点:
在三角形内角和定理的证明过程中如何添加辅助线。
教学流程:
一、情境引入
内角三兄弟之争
在一个直角三角形里住着三个内角,平时,它们三兄弟非常团结可是有一天,老二突然不高兴,发起脾气来,它指着老大说:“你凭什么度数最大,我也要和你一样大!”“不行啊!”老大说:“这是不可能的,否则,我们这个家就再也围不起了……”“为什么?”老二很纳闷。
同学们,你们知道其中的道理吗?
目的:通过对话激发学生的求知欲;让学生通过小组讨论:其中的道理。
《7.5三角形的内角和定理》知识点
学习目标:
1、掌握三角形外角的两条性质;
2、进一步熟悉和掌握证明的步骤、格式、方法、技巧。
3、灵活运用三角形的外角和两条性质解决相关问题。
4、三角形内角和定理
三角形内角和定理:三角形的内角和等于180°。
《7.5三角形内角和定理》同步测试含答案解析
一、选择题
1、若一个三角形三个内角度数的比为2:7:4,那么这个三角形是()
A、直角三角形
B、锐角三角形
C、钝角三角形
D、等边三角形
【考点】三角形内角和定理。
【分析】根据三角形内角和定理可分别求得每个角的度数,从而根据最大角的度数确定其形状。
【解答】解:依题意,设三角形的三个内角分别为:2x,7x,4x,∴2x+7x+4x=180°,∴7x≈97°,∴这个三角形是钝角三角形。
故选:C。
【点评】此题主要考查学生对三角形内角和定理及三角形形状的判断的综合运用。
2、已知△ABC的三个内角∠A、∠B、∠C满足关系式∠B+∠C=∠A,则此三角形()
A、一定有一个内角为45°
B、一定有一个内角为60°
C、一定是直角三角形
D、一定是钝角三角形
【考点】三角形内角和定理。
【分析】由三角形内角和定理和已知条件得出∠A=90°,即可得出结论。
【解答】解:∵∠A+∠B+∠C=180°,∠B+∠C=∠A,∴2∠A=180°,∴∠A=90°,即△ABC一定是直角三角形;
故选:C。
【点评】本题考查了三角形内角和定理、直角三角形的判定方法;熟练掌握三角形内角和定理,并能进行推理论证是解决问题的关键。
三角形内角和教案9
本节微课视频是苏教版数学教科书四年级下册第78~79页的教学内容。在教学之前,学生已经掌握了角的概念、角的分类和角的测量;认识了三角形,知道三角形是由三条线段首尾相接围成的图形,有三个顶点、三条边和三个角。这些已经构成学生进一步学习的认知基础。《三角形的内角和》是三角形的一个重要性质。学生在学习四年级上册“角的度量”时,通过测量三角尺三个角的度数,知道三角尺三个角加起来的和是180度,再加上课前的预习,大部分的学生已经能得出结论:三角形的内角和是180度,只不过他们不清楚其中的道理,只是机械性的记忆。因此,本节课的重点不是结论,而是验证结论的过程。教材组织学生对不同形状、不同大小的.三角形的内角和进行探索,通过转化、推理、比较、操作和验证,总结概括出“所有三角形的内角和都是180度”的规律,从而进一步发展学生的空间观念,提高学生的自主学习能力和推理能力。
下面就具体谈谈微课的教学设计:
一、 教学目标
1、通过测量、转化、观察和比较等活动探索发现并验证“三角形的内角和是180度”的规律,并且能利用这一结论解决求三角形中未知角的度数等实际问题。
2、通过折一折、拼一拼和剪一剪等一系列的操作活动培养学生的联想意识和动手操作能力。体验验证结论的过程与方法,提高学生分析和解决问题的能力。
3、使学生通过操作的过程获得发现规律的喜悦,获得成就感,从而激发学生积极主动学习数学的兴趣。
二、 教学重点和难点
重点:让学生亲自验证并总结出三角形的内角和是180度的结论
难点:对不同验证方法的理解和掌握。
三、 教学过程
(一)质疑——发现问题,提出问题
出示学生熟悉的一副三角尺,让学生说说每块三角尺中各个内角的度数。试着计算每块三角尺的三个内角的度数加起来的和是多少度?
交流:不同三角尺的内角和都是一样的吗?三角尺的内角和有什么特征?
引导学生得出三角尺的三个内角的度数和是180度。
提问:三角尺的形状是什么三角形?三角尺的内角和是180度,我们还可以说成是什么?(得出结论:直角三角形的内角和是180度。)
你有什么办法验证这一结论呢?(动手操作,寻找答案)
方法一:拿出不同的直角三角形,分别测量三个内角的度数,再求和。(提示存在误差,但三个内角的和都在180度左右)
方法二:用两个相同的直角三角形拼成一个长方形,由于长方形的四个内角和是360度,因此能得出一个直角三角形的三个内角和是180度。
启发:直角三角形的内角和是180度,这一结论让你联想到了什么?你能提出什么新的数学问题呢?
引导:从直角三角形的内角和联想到所有三角形的内角和,提出问题:所有三角形的内角和都是180度吗?
(二)探究——分析问题,解决问题
出示三个三角形:直角三角形、锐角三角形和钝角三角形。
引导:直角三角形的内角和是180度了,由此我们联想到锐角三角形和钝角三角形的内角和也有可能是180度。
提问:你有什么办法来验证这一猜想呢?
拿出事先从课本第113页剪下来的3个三角形,动手操作,自主探索,发现规律。
方法一:可以像上面那样先测量每个三角形的三个内角的度数,再计算出它们的和,看看能发现什么规律。学生测量计算,教师巡视指导。
引导:测量时要尽量做到准确,测量是存在误差的,对于测量的不准的同学要重新测定和确认,计算出它们的和,发现其中的规律。
方法二:既然是求三角形的内角和,我们就可以想办法把三角形的3个内角拼在一起,看看拼成了什么角。那怎样才能把3个内角拼在一起呢?我们可以将三角形中的3个内角撕下来,再拼在一起,会发现拼成了一个平角,是180度。
方法三:把三角形的三个内角撕下来,虽然能将他们拼在一起,但是原有的三角形被破坏了。因此,我们还可以通过折一折的方法,把三个内角折过来拼在一起,同样会发现拼成一个平角,是180度。
方法四:将锐角三角形和钝角三角形分别分成两个直角三角形,利用直角三角形内角和是180度进行推理。180+180=360度,360-90-90=180度。
(三)归纳——获得结论
交流:回顾以上3个三角形的内角和的探索过程,你发现了什么规律?
总结:通过测量计算、拼一拼和折一折的方法,我们可以消除心中的问号,肯定得说出所有三角形的内角和都是180度这一结论。
(四)拓展——巩固练习
1、将一个大三角形剪成两个小三角形,每个小三角形的内角和是多少度?
2、在一个三角形中,根据两个内角的度数,求第三个内角的度数?
三角形内角和教案10
【教学内容】:人教版第八册第85页例5及“做一做”和练习十四的第9、10、12题。
【课程标准】:认识三角形,通过观察、操作、了解三角形内角和是180度。
【学情分析】:
学生已经掌握了三角形的概念、分类,熟悉了钝角、锐角、平角这些角的知识。对于三角形的内角和是多少度,学生是不陌生的,因为学生有以前认识角、用量角器量三角板三个角的度数以及三角形的分类的基础,学生也有提前预习的习惯,很多孩子都能回答出三角形的内角和是180度,但是他们却不知道怎样才能得出三角形的内角和是180度。另外,经过三年多的学习,学生们已具备了初步的动手操作能力、主动探究能力以及小组合作的能力。
【学习目标】:
1、结合具体图形能描述出三角形的内角、内角和的含义。
2、在教师的引导下,通过猜测和计算能说出三角形的内角和是180°。
3、在小组合作交流中,通过动手操作,实验、验证、总结三角形的内角和是180°,同时发展动手动脑及分析推理能力。
4、能运用三角形的内角和是180°这一规律,求三角形中未知角的度数。
【评价任务设计】:
1、利用孩子已有经验,通过教师的提问和引导以及学生的直观观察,说出三角形的内角、内角和的含义。达成目标1。
2、在教师的引导下,以游戏的形式学生通过猜测三角形的内角和是多少度,然后通过计算说出三角形的内角和是180°的结论。达成目标2。
3、在小组合作交流中,通折一折、拼一拼和摆一摆的动手操作、实验、验证并归纳总结出三角形的内角和是180°。达成目标3。
4、能运用三角形的内角和是180°这一规律,求三角形中未知角的度数。通过“做一做”和习题第9、10、12题达成目标4和目标3。
【重难点】
教学重点:探索和发现三角形的内角和是180°。
教学难点: 充分发挥学生的主体作用,自主探索和发现三角形的内角和是180°
【教学过程】
一、复习准备。
1、三角形按角的不同可以分成哪几类?
2、一个平角是多少度?1个平角等于几个直角?两个三角板上各个角的度数?
二、探究新知
(一)创设情境,生成问题,认识三角形的内角及内角和
(播放课件)在图形王国中,有一天,三角形家族里为“三角形内角和的大小”爆发了一场激烈的争吵。钝角三角形大声叫着:“我的钝角大,我的内角和一定比你们的内角和大。”锐角三角形也不示弱:“你虽然有一个钝角,可其它两个角都很小。但是我的三个角都不是很小。我的内角和比你大”。直角三角形说:“别争了,三角形的'内角和是180°,我们的内角和是一样大的。”
师:动画片看完了,请大家想一想,什么是三角形的内角和?
师引导学生说出三角形三个内角的度数和叫做三角形的内角和。
多媒体展示:三条线段在围成三角形后,在三角形内形成了三个角(课件闪烁三个角的弧线),我们把三角形内的这三个角,分别叫做三角形的内角(板书:内角),这三个内角的度数的和就叫做三角形的内角和。
(达成目标1:利用多媒体播放动画和孩子已有的经验,通过教师的提问和引导,学生说出什么叫三角形的内角及内角和达成目标1。多媒体创设的情景也为目标二打好铺垫)
(二)、引导猜测三角形的内角和是180度
师:在课件展示的直角三角形、钝角三角形、锐角三角形的对话中,你赞同谁的观点?
预设:学生回答直角三角形。
师:你为什么这么认为呢?
生:我是想三角板上三个角的度数是90度、45度、45度加起来是180度,90度、60度、30度加起来也是180度。
(达成目标2:激发引导学生运用已有经验猜三角形的内角和而不是盲目猜,激起学生的疑问和好奇心,这样在教师的引导下,学生通过猜测三角形的内角和是多少度,然后通过计算说出三角形的内角和是180°的结论。)
(三)、验证三角形的内角和是180度
1.确定研究范围
师:研究三角形的内角和,是不是应该包括所有的三角形?只研究这一个行不行?(不行)那就随便画,挨个研究吧。(学生反对)那该怎样去验证呢?请你们想个办法吧!
师:分类验证是科学验证的一种好方法,下面我们就用分类验证的方法来验证一下,看看三角形的内角和是不是180°?
2.操作验证
教师让每个学习小组拿出课前制作的各种各样的三角形,先找到三个内角,在每个内角标上序号1、2、3。然后请任意用一个三角形,想办法验证我们的猜想。如果有困难,可以启用老师提供的“智慧锦囊”或者寻求同学的帮助。
智慧锦囊:
(1)要知道三个内角的和,只要知道三个角分别是多少度就可以了,你觉得哪个工具可以测出角的度数?试一试。
(2)180°的角是个特殊的角,它是个什么角?你能想办法将这三个内角转化成这样的角吗?
3.汇报交流
师:谁来汇报你的验证结果?
(1)测算法
师小结:用量的方法验证既然有误差、不准,结论就难以让人信服,那有没有办法更好地验证我们的猜测呢?谁还有别的方法?
(2)剪拼法
(3)折拼法
师小结:用拼和折的方法都能将三角形的三个内角转化成一个平角,从而借助我们学过的平角知识证明三角形的内角和确实是180°,你们真会动脑筋!
(4)推算法
①把一个长方形沿对角线分成两个完全一样的直角三角形。因为长方形的内角和是360°,所以一个直角三角形的内角和等于180°。(课件演示过程)
师:直角三角形的内角和已经证明了是180°,现在我们只要能证明:锐角三角形和钝角三角形的内角和也是180°就可以了。
课件演示
②一个锐角三角形,从顶点往下画一条垂线,将三角形分为两个直角三角形,因为我们已经知道直角三角形的内角和是180°,所以两个直角三角形的度数和就是360°,减去两个直角的和180°,就是要证明的三角形内角和,肯定是180°。
4.总结提炼
师:孩子们,刚才我们通过“量——拼——折——推”的方法分类验证了三角形的内角和是( )度?
现在可以下结论了吗?
(板书:三角形三个内角和等于180°。)
师:那在“三角形的争吵中”谁是对的?
(达成目标3。此环节让学生通过“量——拼——折——推”的方法分类验证了三角形的内角和是180度。此环节充分体现了学生学习的主动性。)
(四)利用三角形内角和是180解决问题
1、看图,求出未知角的度数。
2、书本85页“做一做”
在一个三角形中,∠1=140。,∠3=25。,求∠2的度数。
(达成目标3和目标4:能运用三角形的内角和是180°这一规律,求三角形中未知角的度数。通过“做一做”达成目标3和目标4.)
三、目标达成检测方案:
1、求出三角形各个角的度数。
2、埃及金字塔建于4500年前的埃及古王朝时期,它是用巨大石块修砌成的方锥形建筑物,外形像中文“金”字,故名“金字塔”。金字塔大小、高矮各异,外表有四个侧面,每个侧面都是等腰三角形。人们量得这个三角形的一个底角是64度。
四、课堂小结,提升认识
同学们,这节课你有哪些收获?我们是怎样得到“三角形内角和等于180度”这个结论的?
师:是啊,今天咱们不但知道了三角形的内角和是180°,更重要的是我们经历了探究三角形内角和的验证方法。咱们从猜想出发,经过验证(用量、拼、折、推等)得到了结论并利用结论解决了一些问题。孩子们,其实我们在不知不觉中已经走了数学家的探究历程……希望同学们在今后的学习中大胆应用,勇于创新,做最棒的自己
三角形内角和教案11
设计说明
三角形的内角和等于180°是三角形的一个重要特征,明确三角形的内角和等于180°是以后学习和解决实际问题的基础。
1.让学生在生动具体的情境中学习数学。
《数学课程标准》指出:在教学中,教师应充分利用学生的生活经验,设计生动有趣、直观形象的数学教学活动,如讲故事、直观演示、模拟表演等,激发学生的学习兴趣,让学生在生动具体的情境中理解和掌握数学知识。在本节课的教学设计中,为了增强学生的学习兴趣,使其快速、积极、主动地投入到学习中,上课伊始的故事导入以及新知识的情境创设都能把学生带入快乐的学习氛围中。
2.通过操作、观察、猜测、交流,使学生体验数学知识的形成过程。
在本节课的设计中,对于三角形的内角和等于180°这一结论没有直接给出,而是通过量、算、剪、拼、折等活动证实了三角形的内角和等于180°,使学生在自主获取知识的过程中,培养了创新意识、探索精神和实践能力。
课前准备
教师准备 PPT课件 量角器 直尺
学生准备 量角器 直尺 各种三角形
教学过程
第1课时 三角形内角和(1)
⊙故事引入
三角形的家庭是一个团结的大家庭。但今天,三角形的`家庭内部却发生了争论,一个钝角三角形说:“我的钝角比你们的角都大,所以我的内角和最大。”一个锐角三角形说:“我的个子比你高,我是大三角形,你是小三角形,所以我的内角和肯定比你大。”一个直角三角形说:“不能只看一个钝角大就说内角和大,也不能只看个子,这样不公平。”其他的三角形也跟着争执不休,都说自己的内角和最大。这时,家庭里的王者来了,听了它们的诉说,也糊涂了。什么是三角形的内角?什么是三角形的内角和呢?
(课件演示三条线段围成三角形的过程)
师生共同小结:三条线段围成三角形后,在三角形内形成了三个角,这三个角就是三角形的三个内角(课件闪烁三个内角)。这三个内角的度数之和就是这个三角形的内角和。
导入:到底谁说得对呢?这节课我们一起来探究三角形的内角和。[板书课题:三角形内角和(1)]
设计意图:由故事引入,激发学生的学习兴趣,并通过故事提出问题,带着对问题的思考,唤起学生的求知欲望,从而使他们主动投入到学习中去。
⊙自主探究,合作交流
1.提出问题。
师:你有什么办法来比较两个三角形的内角和?
2.量一量,算一算。
(1)出示活动要求。
①在练习本上画一个锐角三角形、一个直角三角形和一个钝角三角形。
②用量角器测量所画三角形的各个内角的度数,把测量结果记录在表格中,并计算出每个三角形的内角和。
(2)小组合作,量一量,算一算。
(3)交流汇报。
师:观察计算结果,你发现了什么?
引导学生发现每个三角形的内角和都在180°左右。
三角形内角和教案12
教学目标
知识与能力:学生通过测量、撕拼的方法探索和发现三角形三个内角和是180°。
过程与方法:学生经历合理猜想和验证三角形内角度数和等于180°的过程,发展空间观念及分析推理能力。
情感态度和价值观:学生在活动中体验成功的喜悦,激发学生探索数学的愿望和兴趣。
重点难点
教学重点:
探究发现三角形的内角和是180度。
教学难点:
在猜想和验证三角形内角和的过程中发展空间观念。
教学过程
活动1【导入】理解内角、内角和概念
1、谜语引入:形状似座山,稳定性能坚,三竿首尾连,学问不简单,打一几何图形猜一猜是什么?
Q:结合谜面的信息来说一说三角形有什么特点?
2、介绍内角:这三个角都在三角形的里面,又叫内角。
Q:三角形有几个内角?
3、介绍内角和:把三个内角的度数加起来求和就是三角形的内角和。
引出课题:今天我们就来研究三角形内角和。
活动2【活动】观察图形
1、观察图形的变与不变
ppt依次出示
Q:这是锐角三角形,什么是它的内角和?
出示直角三角形,它的内角和是指?
出示钝角三角形,内角和是指?
质疑:哪个三角形的内角和最大?
预设1:钝角三角形内角和大。(说想法)
预设2:一样大。(说想法)
预设3:180度。
小结:三个三角形的样子不一样,大小也不一样,三个内角也不一样,但内角和是一样的。
(二)活动二:猜想内角和不变的度数
Q:这个一样的度数是多少?你是怎么知道的.?
预设1:听说过,学过。
预设2:直角三角尺上三个角的度数和是180度。
预设3:等边三角形。
这两个都是我们知道度数的特殊的三角形,请你根据这个特殊的三角形来大胆的猜猜三角形内角和是多少度?那任意的一个三角形的内角和度数是不是180°呢?今天我们就来一起研究。
活动3【活动】测量验证
(一)思考量的方法和原因
过渡:你想怎么研究?(用量角器去量)
Q:谁来介绍介绍量的方法?
预设:要想研究内角和,只要把三个内角度数量出来再加起来看看是不是180度就可以了。
(二)动手测量
PPT:操作建议:
1、请你找到三角形的三个内角,用彩笔标序号1、2、3。
2、用量角器仔细测量后,记录角的度数。
3、列式计算出三角形内角和度数。
动手测量
(三)汇报交流:
学生1展示测量的过程。
Q:还有谁测量的这个锐角三角形,说一说?
追问:为什么同一个三角形内角和度数却不一样?
Q:你在测量的过程中遇到了什么困难?
Q:观察这些数据,虽然都不太一样,但是都很接近?
小结:测量确实可以帮助我们找到三个角的度数,加起来就可以求出内角和,但是测量有误差。
活动4【活动】拼角验证
(一)思考其它验证方法
Q:你还有其他的方法吗?
预设1:学生没有反应。
师引导:说到180度,你想到什么角?(平角)
预设2:撕拼法
Q:怎么把三个内角拼在一起?
(生不撕,教师帮助突破,撕下三个内角。)
Q:你能在投影上拼一拼吗?
预设3:折叠法
你的方法也很好,你们听懂了吗?一会儿可以试试。
预设4:描画法
Q:怎么描?你能演示一下吗?
其他同学观察他在做什么?
引语:刚才说的方法都很好,下面我们自己来试一试。
(二)动手拼一拼
操作要求:
1、请你用彩笔在纸上随意画一个三角形,并剪下来。
2、用彩笔标出三个内角。
3、尝试操作。
动手操作
(三)汇报交流
Q:你是怎么研究的?发现了什么?
(四)小结
刚才每人的三角形是自己任意画出的,形状、大小都不一样。无论是撕拼、折叠、还是描画的方法,都是在把这三个内角拼在了一起,转化成一个平角,我们发现他们的内角和都是180度。
活动5【活动】几何画板验证
引:但我们时间有限,研究的三角形个数有限,是不是任意一个三角形的内角和都是180度呢?我们可以借助几何画板来看一看。
师:介绍:计算机能够帮助我们比较精确地测量出三个角的度数,并计算它们的和。
观察:老师拉动一个顶点,什么变了?什么没变?
小结:也就是,无论我们怎么改变三角形的形状,大小,虽然它的内角在变化,但三个内角和的却是不变的,都是180度。
活动6【练习】基础练习
1、三角形中∠1=55°,∠2=45°,∠3=?
2、直角三角形:我有一个锐角是40°,求另一个角?
3、说一说:在一个三角形中,能有两个直角吗?能有两个钝角吗?为什么?
4、拼三角形
师:两个180°不是360°吗?
小结:看来,组合以后的图形还要分清楚哪些是内角。
活动7【练习】拓展练习
(一)拓展练习
今天,我们通过自己的研究发现三角形内角和是180度。那四边形有没有内角和呢?它的内角和是多少度?
课件演示。
说说这节课你的收获?
三角形内角和教案13
一、教学目标:
1、理解掌握三角形内角和是180°,并运用这一性质解决一些简单的问题。
2、通过直观操作的方法,引导学生探索并发现三角形内角和等于180°,在实验活动中,体验探索的过程和方法。
3、在探索和发现三角形内角和的过程中获得成功的体验。
二、教学重、难点:
重点:探索并发现三角形内角和等于180°。
难点:运用三角形内角和等于180°的性质解决一些实际问题。
教具:课件、三角形若干。
学具:量角器、直角三角形、锐角三角形和钝角三角形各一个。
三、教学过程
(一)创设情境,导入新课
我们已经学过了三角形的知识,我们来复习一下,看看大屏幕,各是什么三角形?谁能说说什么是锐角三角形、直角三角形、钝角三角形?追问:不管是什么三角形它们都有几个角呢?这三个角都叫做三角形的内角,而这三个内角的和就是这个三角形的`内角和。那么谁来说一说什么是三角形的内角和?三角形有大有小,形状也各不相同,那么它们的内角和有没有什么特点和规律呢?我们来看一个小片段,仔细听它们都说了什么?
教师放课件。
课件内容说明:一个大的直角三角形说:“我的个头大,我的内角和一定比你们大。”一个钝角三角形说:“我有一个钝角,我的内角和才是最大的)一个小的锐角三角形很委屈的样子说“是这样吗?”
都听清它们在争论什么吗?(它们在争论谁的内角和大。)谁能说一说你的想法?(学生各抒己见,是不评价)果真是这样吗?下面我们就来研究“三角形内角和”。
(板书课题:三角形内角和)
(二)自主探究,发现规律
1、探究三角形内角和的特点。
(1)检查作业,并提出要求:
昨天老师让每位学生都分别剪出了锐角三角形、直角三角形和钝角三角形,并量出了每个角的度数,都完成了吗?拿出来吧,一会我们要算出三角形的内角和填在下面的表格里。我们来看一下表格以及要求。出示小组活动记录表。
小组活动记录表
小组成员的姓名
三角形的形状
每个内角的度数
三角形内角的和
(要求:填完表后,请小组成员仔细观察你发现了什么?)
②小组合作。
会使用表格了吗?下面我们就以小组为单位,按照要求把结果填在小组长手中的表格内。
各组长进行汇报。发现了三角形的内角和都是180°左右。
师:实际上,三角形三个内角和就是180°,只是因为测量有误差,所以我们才得到刚才得到的数据。
2、验证推测。
那么同学们有没有什么办法知道三角形的内角和就是180°呢?大家可以讨论一下,学生可能会想到用折拼或剪拼的方法来看一看三角形的三个角和起来是不是180°,也就是说三角形的三个角能不能拼成一个平角。师生先演示撕下三个角拼在一起是否是平角,同学们在下面操作进行体验,再用课件演示把三个内角折叠在一起(这时要注意平行折,把一个顶点放在边上)学生也动手试一试。
通过我们的验证我们可以得出三角形的内角和是180°。
板书:(三角形内角和等于180°。)
3、师谈话:三个三角形讨论的问题现在能解决了吗?你现在想对这三个三角形说点什么吗?(让学生畅所欲言,对得出的三角形内角和是180°做系统的整理。)
4、同学们还有什么疑问吗?大家想一想我们知道了三角形内角和是180°可以干什么呢?(知道三角形中两个角,可以求出第三个角)
出示书28页,试一试第3题,并讲解。
说明:在直角三角形中一个锐角等于30°,求另一个锐角。
生独立做,再订正格式、以及强调不要忘记写度。
小结:同学们有没有不明白的地方?如果没有我们来做练习。
(三)巩固练习,拓展应用
1、出示书29页第一题。说明:第一幅图是锐角三角形已知一个锐角是75°,另一个锐角是28°,求第三个锐角?第二幅图是直角三角形已知一个锐角是35°,求另一个锐角?第三幅图是钝角三角形已知一个锐角是20°,另一个锐角是45°,求钝角?
完成,并填在书上。讲一讲直角三角形还有什么解法。
2、出示29页第2题。
说明:一个钝角三角形说:我的两个锐角之和大于90°。
一个直角三角形说:我的两个锐角之和正好等于90°。让学生判断。
3、画一画:
出示四边形和六边形。运用三角形内角和是180°计算出各自的内角和。你能推算出多边形的内角和吗?
三角形内角和180度是科学家帕斯卡12岁时发现的。我们同学还没到12岁,看你能不能通过自己的努力也去探索和发现。
(四)课堂总结
让学生说说在这节课上的收获!
三角形内角和教案14
三角形的有关知识是“空间与图形”中最为核心、最为重要的内容,它不仅是最基本的直线型平面图形,而且几乎是研究所有其它图形的工具和基础。而三角形内角和定理又是三角形中最为基础的知识,也是学生最为熟悉且能与小学、中学知识相关联的知识,看似简单,但如果处理不好,会导致学生有厌烦心理,为此,本节课的设计力图实现以下特点:
(1)通过折纸与剪纸等操作让学生获得直接经验,然后从学生的直接经验出发,逐步转到符号化处理,最后达到推理论证的要求。
(2)充分展示学生的个性,体现“学生是学习的主人”这一主题。
(3)添加辅助线是教学中的一个难点,如何添加辅助线则应允许学生展开思考并争论,展示学生的思维
过程,然后在老师的引导下达成共识。
1、三角形的内角和定理是从“数量关系”来揭示三角形内角之间的关系的,这个定理是任意三角形的一个重要性质,它是学习以后知识的基础,并且是计算角的度数的方法之一。在解决四边形和多边形的内角和时都将转化为三角形的内角和来解决。其中辅助线的作法、把新知识转化为旧知识、用代数方法解决几何问题,为以后的学习打下良好的基础,三角形内角和定理在理论和实践中有广泛的应用。
2、三角形内角和定理的内容,学生在小学已经熟悉,但在小学是通过实验得出的,要向学生说明证明的必要性,同时说明今后在几何里,常常用这种方法得到新知识,而定理的证明需要添辅助线,让学生明白添辅助线是解决数学问题(尤其是几何问题)的重要思想方法,它同代数中设末知数是同一思想。
3、学生在小学里已知三角形的内角和是180°,前面又学习了三角形的有关概念,平角定义和平行线的性质,而且也渗透了三角形的内角和是180°的证明,它的证明借助了平角定义,平行线的性质。用辅助线将三角形的三个内角巧妙地转化为一个平角或两平行线间的同旁内角,为定理的证明提供了必备条件。尽管前面学生接触过推理论证的知识,但并末真正去论证过,特别是在论证的格式上,没有经过很好的锻炼。因此定理的证明应是本节引导和探索的重点。辅助线的作法是学生在几何证明过程中第一次接触,只要教师设置恰当的问题情境,学生再由实验操作、观察、抽象出几何图形,用自主探索的'方式是可发完成的,并且这样的过程可以更好地发展他们的创造能力和实验能力。
在小学已学过三角形的内角的有关知识,知道三角形的内角和为1800,但是为什么是1800并没有进行研究,因此本节是在学生前几学段学过三角形、线段、角等,初步了解了一些简单几何体和平面图形及特征会进行简单说理后,对“三角形的内角和定理”进行证明及简单应用。在证明过程中,通过一题多解,初步体会思维的多向性,引导学生的个性化发展,通过本节学习可以进一步丰富对图形的认识和感受。
七年级学生年龄较小,思维正处在具体形象思维向抽象逻辑思维转变的阶段,也是由代数运算向几何推理过渡的较好时期,通过前面的学习,学生已具备一些分析问题、解决问题的能力,这样可以让学生和谐地融入到探究性学习的氛围中。刚开始上课,我让学生回顾了平角的概念,平行线的性质,为证明内角和垫定基础。然后通过几何画板演示一组在小学已经学过的把三角形的三个角拼成一个平角的方法,通过设问:从刚才拼角的过程中,你能根据我们在前面所学的知识说出证明:“三角形内角和等于180°”这个结论的正确方法吗?通过让学生各抒已见,畅所欲言,鼓励学生倾听他人的方法,从中获益,增加了学生的探究精神,有意识地培养学生的说理能力,逻辑推理能力,增强了语言表达能力,培养学生的一题多思,一题多解的创新精神,让学生体会数学辅助线的桥梁作用,在潜移默化中渗透了初中阶段一个重要数学思想―――转化思想,为学好初中数学打下坚实的基础。
俗话说的好:“熟能生巧”。数学离不开练习,要掌握知识,形成技能技巧,一定要通过练习。养成良好的思维品质也要通过一定的思考练习,课程标准提倡练习的有效性。对此,我非常注意将数学的思考融入不同层次的练习之中,很好的发挥练习的作用。例如,我设置的一层练习,基本上都是给出或者间接给出一个三角形的两个角度,学生求第三个角,从中培养学生应用意识和解决问题的能力。这些练习设计目的明确,针对性强,使学生对定理得到了巩固。
通过二层练习,巩固三角形内角和知识,培养学生思维的广阔性,通过讨论一个三角形中最多有几个直角、钝角,至少有几个锐角,为学生提供充分从事数学活动的时间、空间,让学生在自主探索、合作交流的氛围中,有机会分享同学的想法,培养了学生之间良好的人际关系,拓展了三角形内角和是180°的知识外延。
三层练习难度上与一、二层练习有了大幅度的提高,为实现分层教学,满足成绩较好的同学的需求,有事可作,为高效课堂提供了平台。
最后,在堂小结方面,采用用先让学生归纳补充,然后教师再补充的方式进行:⑴这节课我们学了什么知识?⑵你有什么收获?充分发挥学生的主体意识,培养学生的语言概括能力。
总之,本节课教学活动中我力求充分体现以下特点:以学生发展为本,以学生为主体,思维为主线的思想;充分关注学生的自主探究与合作交流;练习体现了层次性,知识技能得于落实和发展。教师是学生学习的组织者、引导者、合作者,而非知识的灌输者,因而对一个问题的解决不是要教师将现成的方法传授给学生,而是教给学生解决问题的策略,给学生一把在知识的海洋中行舟的桨,让学生在积极思考,大胆尝试,主动探索中,获取成功并体验成功的喜悦。
三角形内角和教案15
教学内容
探索与发现:三角形内角和(教材24~26页)。
教学目标
1.知识目标:让学生通过“测量、撕拼、折叠、猜想、验证”等方法,探索并发现“三角形内角和等于180°”。
2.技能目标:能运用三角形内角和的性质解决一些简单的问题。
3.情感目标:在活动中,让学生体验主动探究数学规律的乐趣,激发学生学习数学的热情。
重点难点
教学重点:探索并发现三角形内角和等于180°。
教学难点:掌握探究方法,学会运用三角形内角和的性质。
学具准备
各种 三 角形、剪刀、量角 器、课件。
教学 过程
一、创设情境,揭示课题。
1.播放课件,提问: 这些三角形在争论什么?
教师:是在争论关于自己内角和的大小。
2.教师:什么是三角形的内角和?( 板书:内角和)
讲解:三角形内两条边所夹的角就叫做这个三角形的内角。每个三角形都有三个内角,这三个内角的度数加起来就是三角形的内角和。
二、自主探究,合作交流。
(一)提出问题。
1.你认为谁说得对?你是怎么想的?
2.你有什么办法可以比较一下这些三角形的内角和呢?
学生可能会说:用量角器量一量三个内角各是多少度,把它们加起来,再比较。
(二)探索与发现。
1.初步探索。
(1)量一量。
了解活动要求:
A.在练习本上画一个三角形,量一量三角形三个内角的度数并标注。(测量时要认真,力求准确。)
B.把测量结果记录在表 格中,并计算三角形内角和。
C.讨论:从刚才的测量和计算结果中,你发现了什么?(引导学生发现每个三角形 的三个内角和都在180°左右。)
(2)提出猜想。
刚才我们通过测量和计算发现了三角形内角和都在180°度左右,那你能不能大胆的猜测一下:三角形内角和是否相等?三角形的内角和等于多少度呢?
2.动手操作,验证猜想。
教师:这个猜想是否成立呢?我们要想办法来验证一下。
教师引导:180°,跟我们学过的什么角有关?我们课前准备了各种三角形纸片,你能不能利用这些三角形纸片,想办法把三角形的'三个内角转换成一个平角呢?
(1)小组合作,讨论验证方法。
(2)分组汇报,讨论质疑。
学生可能会出现的方法:
①撕拼的方法。
把三个角撕下来,拼在一起,3个角拼成了一个平角,所以三角形内角和就是180°。
教师:锐角三角形、直角三角形、钝角三角形是否都能得出相同的结论呢?
②折一折的方法。
把三角形的角1折向它的对边,使顶点落在对边上,然后另外两个角相向对折,使它们的顶点与
角1的顶点互相重合,证明了各种三角形内角和都等于180°。
3.课件演示,归纳总结,得出结论。
(1)引导学生得出结论。
孩子们,三角形内角和到底等于多少度呢?“
学生一定会高兴地喊:“180°!”
(2)总结方法,齐读结论。
教 师:我们通过动作操作,折一折,拼一拼,把三角形的三个内角转换成了一个平角,成功的得到了这个结论,让我们为自己的成功鼓掌!
(3)解释测量误差。
教师:为什么我们刚才通过测量,计算出来的三角形内角和不是正好180°呢?
那是因为我们在测量时,由于测量工具、测量操作等各方面的原因,使我们的测量结果存在一的误差。实际上,三角形内角和就等于180°。
三、探究结果汇报。
教师:现在你知道这些三角形谁说得对了吗?(都不对!)
学生:因为三角形内角和等于1 80°。 (齐读)
教师小结:三角形的形状和大小虽然不同,但 是三角形的内角和都是180度。
四、课堂应用,巩固加深。
1.试一试。
数学课本25页。
2.练一练。
(1)数学书25页第一题。(生独立解决。)
(2)数学书25页第二题。(动手量一量。)
拼成的四边形的内角和是( )。
拼成的三角形的内角和是( )。
五、课堂作业设计。
教材26页4、5、6题。
【三角形内角和教案】相关文章:
三角形内角和教案10-20
三角形内角和教案范文01-05
《三角形的内角和》教案(精选17篇)12-20
三角形内角和的教学反思11-09
三角形内角和教学设计11-13
四年级《三角形内角和》教学设计11-08
多边形的内角和说课稿03-07
多边形内角和说课稿01-21
四年级数学优质课《三角形内角和》教学设计02-25