- 《植树问题》优秀教学设计 推荐度:
- 相关推荐
《植树问题》教学设计优秀
作为一名默默奉献的教育工作者,常常要根据教学需要编写教学设计,借助教学设计可以更大幅度地提高学生各方面的能力,从而使学生获得良好的发展。那么写教学设计需要注意哪些问题呢?以下是小编整理的《植树问题》教学设计优秀,欢迎大家分享。

《植树问题》教学设计优秀1
设计理念:
自主探索,凸显学生个性;合作探究,构建和谐课堂。
教学目标:
一、知识与技能性:
1.利用学生熟悉的生活情境,通过动手操作的实践活动,让学生发现间隔数与植树棵数之间的关系。
2.通过小组合作、交流,使学生能理解间隔数与植树棵数之间的规律。
3.能够借助图形,利用规律来解决简单植树的问题。
二、过程与方法:
1.进一步培养学生从实际问题中发现规律,应用规律解决问题的能力。
2.渗透数形结合的思想,培养学生借助图形解决问题的意识。
3.培养学生的合作意识,养成良好的交流习惯。
三、情感态度与价值观
通过实践活动激发热爱数学的情感,感受日常生活中处处有数学、体验学习成功的喜悦。
教学重点:
从实际问题中发现植树问题(两端都种)的数学模型。
教学难点:
灵活运用植树问题(两端都种)的数量关系,正确解答生活中的实际问题。
教具准备:
课件、纸条、表格、直尺等。
教学过程:
一、课前交流,激趣导入
1、活动交流
师:同学们,我知道你们都聪明、好学、上进。今天我很高兴能与大家一起探索数的奥妙,你们欢迎吗?
谢谢你们的掌声。下面请大家伸出你们懂事的双手,让老师看一看,可以吗?
大家认真地看一看,将来我们就是要凭借这一双手,创造我们的幸福生活。
同样也是这一双手,还藏着很多数学奥秘,你们想知道吗?
2、教学“间隔”含义
师:看着老师举起的这只右手,你们看见了几个手指?
学生齐说:“5个手指头”。
师:很好。你们再看看,这5个手指间有几个空格?
生:4个
师:很好!在数学上我们把这样的“空格”叫做间隔(板书)。
大家再仔细观察自己的手,5个手指之间有4个间隔。那么,4个手指间有几个间隔呢?3个手指,2个手指呢?同桌互相说一说。
师:你们发现手指数与间隔数的规律了吗?谁能勇敢地站起来告诉老师吗?
答案:手指的个数比间隔数多“1”或间隔数比手指少1。
3、导入课题
实际生活中的“间隔”随处可见,比如,每相邻两棵树之间的距离,也是一个间隔。
今天,我们就以植树为例,一起来探索数学里间隔的奥秘。(板书课题:植树问题)
课前导入这一部分,学生配合的比较好。而且学生之间发现“手指数与间隔数之间的联系”,这是非常好的,但是,我在这觉得这样是不是有点多余。可是我又觉得这里,让学生初步的感知这一数量之间的关系,其实是一个铺垫作用。想想也有此理。
二、动手操作,初步感知
1、创设情景(课件出示)
师:我们学校为了进一步美化校园环境,准备在学校门口这条路的一
边种上白桦树。
师:你们想不想看看学校打算怎么种吗?我们一起来看看具体要求吧!
2、理解题意
[出示要求]:我们学校准备在学校门口长100米的这条路一边种上白桦树,每隔5米栽一棵(两端都栽),请问一共需要多少棵树苗?
师:我想请一个同学来读一读,从这份要求,你能获得哪些信息?同学们可以小声交流一下,然后把你们交流的结果向全班同学汇报。(师根据学生汇报板书:总长、间距、间隔数、棵树)。
师:两端都栽你们怎么认为的呢?
指名说一说,然后师实物演示。
师:每隔5米是什么意思?你能用自己理解的方式来告诉你的同学吗?
教师在学生汇报的基础上归纳小结。(两棵树之间的距离是五米,每两棵树的距离都相等,两棵树之间的间距是5米)
师:好,你们能帮帮老师算一算,学校需要准备多少棵树苗呢?
3、自主探究
生:自由做题
师:指点几个学生上台板演。同学们做完了吗?我们看同样的要求却出现了不同的答案。你们同意哪个呢?那学校究竟该买多少棵树苗呢?是20还是21……
这个环节,不知是不是学生基础比较差,还是……我从学生的小组中发现只有一种答案没有别的,别的就是很离谱的过程。这里学生只知道100/5=20(棵)这一答案。这样使我在讲时就有点难。
师:这样吧同学们以小组为单位,听清楚要求:利用你们准备的学具摆一摆。也可以用一条线段来代表100米的小路,用你们喜欢的图案表示树。把你们小组的想法在纸上画一画。(小组活动)
4、汇报交流,展示思路
师:同学们,你们探究出结果了吗?
生:画线段的方法
生:摆火柴的方法……
师:初步推出棵数=间隔数+1(板书棵数)
这里学生们有一部分的学生知道通过摆一摆的方法去探究出实际需要21棵。但是没有学生知道用线段来画,许多的学生不知所措。不知道怎么做。我在想是不是我讲解不清楚,可是有一部分的学生可以通过摆一摆得出这个规律呀。这可能对学生了解不够深吧。也许该用更简单的方法去授课。用20米长的小路,也许会有更好点的效果。
三、合作探究,发现规律。
1、探索规律
学生汇报,师也同时在黑板具体教学摆一摆及画线段图的方法。进一步理解间距、间隔数
师:学生都表现的不错,我们再来看一下这种规律发现过程。这是一条100米的小路,学校要求两端都栽,我先在一头栽上一棵树,隔5米栽一棵,隔5米栽一棵。现在是几棵树,几个间隔,现在呢?这又是几棵树,几个间隔……。好了,我不栽了。请同学们想一想6棵树几个间隔,8棵树几个间隔,10棵树几个间隔,100棵树几个间隔,那15个间隔几棵树,18个间隔几棵树,那20个间隔几棵树。
师:从中你们发现了什么规律?
生:(指名回答,要强调是在什么情况下。)棵数比间隔数多1,间隔数比棵数少1。
师小结:两端都栽的情况下:“间隔数+1=棵数”
“间隔数=棵数-1”(板书)
请同学自己读一读。
师:同学们,在两端都栽的`情况下,棵数与间隔数有什么关系?
请同学错的上台订正。
师:同学们,我们在刚才探讨了在100米的小路上,两端都栽,每隔5米栽一棵,需要21棵树苗。我代表学校谢谢你们。
2、运用规律
师:如果让你来设计我们学校这条小路的植树方案,还是这100米长的小路的一边(两端都栽)还可以每隔几米栽一棵?(整米数)
出示:表格。
师:根据学生汇报,完成表格。这一部分可能是多余的。我在授课时,发现这样填表格起不了什么大的作用。
四、应用规律,解决问题。
师:现在我们得用用这个规律来解决数学问题
师:还是这条小路,假如每隔两米栽一棵,在两端都要栽的情况下,需要几棵树苗呢?请你们口答这题。
师:假如现在这条小路延长到200米,还是每隔5米一棵(两端都栽),需要几棵树苗呢?
师:如果我种了5棵树,每隔5米栽一棵,从第一棵到最后一棵全长多少米呢。
师:真棒,我发现学生学的非常的认真!我们刚据探讨出来的规律就运用的这么好。老师真佩服大家。运用植树的规律不仅能解决植树的问题,还能解决我们生活的实际问题。其实在日常生活中,在我们的周围有很多类似于植树问题的事件,同学们你能列举一些这样的事例吗?(学生汇报后,师用课件展示生活中的事例图片。)
师再出示:安装路灯、电线杆、设立车站、摆花盆、走楼梯、建楼房、排队做早操等等。
五、提升思维,巩固练习
师:看来,数学知识与我们的实际生活有很密切的联系,我们平时一定认真观察,多留心身边的事物。
师:运用今天所学的知识我们可以解决生活中一些相关的实际问题。
1、做一做
在全长1000米的街道两旁安装路灯(两端都装),每隔50米安装一座。一共安装了多少座路灯?
2、想一想
在沿河路的一边,设有16个节能路灯(两端都设),相邻两根的距离平均是60米,这条路有多远?
3、猜一猜。
甲、乙、丙谁说的对?
有100人参加春游活动,这列队伍中如果每两人平均距离是1米,请问这列队伍全长多少米?
甲说:100米
乙说:99米
丙说:101米
六、质疑:学习到这里,同学们想一想有没有什么不明白的地方,有的可以提出来我们一起解决。
七、归纳:(同学们学得真不错,让我们一起完成一首儿歌吧!)教学儿歌
八、课堂小结,课外延伸
师:同学们坐好了,这节课上同学们个个都表现得特别棒,积极思考,涌跃回答问题,这一却都给了我快乐,给了我鼓励,和同学们在一起我很幸福,你们快乐吗?那你又有什么收获呢?谁能说说。
《植树问题》教学设计优秀2
教学目标:
1.通过猜测、验证等数学探究活动,使学生发现一条线段上两端都栽的植树问题的规律,构建数学模型,解决实际生活中的问题。
2.培养学生通过“化繁为简”从简单问题中探索规律找出解决问题方法的能力,初步培养学生的模型思想和化归思想。
3.通过合作交流,感受数学在生活中的的应用,体验学习成功的乐趣。
教学重点:
运用数形结合、一一对应建构植树问题模型,并灵活地解决植树问题。
教学难点:
“一一对应思想”的运用
教学准备:
课件、10根小棒、尺子、白纸等。
【教学过程】:
一、创设情境引入
1、师:今天张老师和大家一起学习,你们欢迎吗?怎么欢迎?(学生鼓掌)
师:手不但能表示情感,还藏着数学奥秘呢!伸开你的右手,你找到了数字几?
生:5
师:5是什么?
生:5个手指
师:就是手指数,那还能发现哪个数?
生:4个空隙
师:你能指给大家看看吗?
师:像这样每两个手指之间的空隙,在数学上叫做间隔。(板书:间隔)
师: 4根手指几个间隔?三根呢?
2、找一找生活中还有哪些间隔现象?(课件出示)今天我们就一起来研究与间隔有关的一类有趣的'数学问题:植树问题。(板书课题)
二、发现规律
1.课件出示:同学们要在全长500米长的小路的一边植树,每隔5米栽一棵树。(两端都栽)一共要栽多少棵数?
(1)你获得了哪些数学信息?问题是什么?“一边”“每隔5米”、“两端都栽”什么意思?(解释“一边”、“500米”是全长和“每隔5米”是间距)
(2)那么我们需要种多少棵树呢?
(3)请同学猜一猜、算一算
预设:100÷5=20? 100÷5+1=21? 100÷5-1=19
(4)引导验证:现在有不同的猜想,到底谁的对呢?怎么办?我们能不能想一个办法验证呢?如果我们画图来验证,你觉得好不好?(太麻烦)
三、建立数学模型
1、化繁为简
师:我们可以先从简单数据开始研究。我们可以把这里的总长500米改成5米、10米、15米20米、30米,请你选一个来摆一摆、画一画,数一数、找一找规律验证下吧。
出示活动要求:
(1) 结合生活情境,独立用学具摆一摆,也可以用画一画、找一找、算一算的办法研究两端都栽的情况下,棵数与间隔数的关系,有困难的同学也可以同桌合作。
(2) 完成后,在小组内说一说你的想法。
2、全班交流,完成表格。
3、引导总结规律,完成板书:
4、回归应用
(1)师:那回到原来的题目全长改成500米,会算吗?那么我把数字再放大变成1000米,怎么做?
(2)全长10000米,每隔10米种一棵(两端都种),要种多少棵?
5、小结:其实今天的学习我们用了一个非常重要的学习方法,(板书:以小见大或化繁为简)也就是像这样遇到数据比较大或比较繁琐的问题时我们可以用一些小数据、一个简单的草图找到规律来解决。
四、联系生活,解决问题
1.出示:为美化校园环境,建安小学准备在一条长10米的小路两旁,每隔2米放一盆花,(两端都放)一共可放多少盆花?
2、路的一边从头到尾摆了6盆花,如果每两盆花之间在插一面小旗,一边能插几面小旗?两边呢?
3.同学们排成一队去参观,从头到尾一共12人,每两个人之间的距离是2米,那么这列队伍长是多少米?
五、课堂总结:
这节课学了什么?有什么收获?
六、拓展延伸:
出示30米,每隔5米两端都种,学生读题。出示房子,师:现在还是两端都种吗?
《植树问题》教学设计优秀3
【教材分析】
本册的“数学广角”主要是渗透有关植树问题的方法,通过现实生活中的一些常见的实际问题,让学生从中发现一些规律,抽取出其中的数学模型,然后再用这些规律来解决生活中的一些简单实际问题。
在本节课里,学生第一次接触到“植树问题”。解决植树问题的思想方法是实际生活中应用比较广泛的“复杂问题简单化”的数学方法。让学生能够理解植树问题中两端都栽的情况下数量之间的关系,并能解决生活中的一些简单实际问题。教学中,要引导学生通过观察、猜测、实验、推理等活动,初步体会植树问题的数学思想方法,感受数学的魅力。同时让学生学习应用植树问题的思想方法解决一些简单的实际问题,培养学生观察、分析及推理的能力,培养他们探索数学问题的兴趣和发现、欣赏数学美的意识。
【学情分析】
“植树问题”原本属于经典的奥数教学内容,新课程教材把它放到了4年级下册的“数学广角”中让所有的学生学习,说明这一教学内容本身具有很高的数学思维含量和很强的探究空间,既需要教师本身的有效引领,也需要学生的自主探究。从学生的思维特点看,3 、4年级的学生仍以形象思维为主,但抽象逻辑思维有了初步的发展,具备了一定的分析综合、抽象概括、归类梳理的数学活动经验。教学时可以从实际的问题入手,引导学生在分析、思考问题的过程中,逐步发现隐含于不同情形中的规律,经历抽取出数学模型的'过程,体验数学思想方法在解决问题中的应用。
【教学目标】
1.通过探究发现一条线段上两端都植树问题的规律;
2.使学生经历和体验“复杂问题简单化”的解题策略和方法;
3.让学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,培养学生的应用意识和解决实际问题的能力。
【重点难点】
在探究活动中发现规律,抽取数学模型,并能够用发现的规律来解决生活中的一些简单实际问题。通过教学让学生理解“两端都种”情况下棵数和间隔数之间的规律,并利用规律来解决生活中的实际问题。
【教学策略】
采用自主探究式学习模式,即学生利用学具尝试动手“种树” ——探究发现规律——应用规律实践,通过有序的操作、思考、实践等活动,使学生的所想、所悟与直观形象结合,经历知识的探究过程,渗透数学学习方法,深刻体会到解决植树问题的思想方法内涵。
【教学过程】
一、课前交流,创设情境
(播放树木图片)
1.同学们,看到了什么?有什么感受?
2.刚刚我们仿佛走进了绿色的世界,真是让人陶醉!这都是植树造林带给我们的好处,上到国家领导人,下到中小学生,都经常参加植树活动(课件:图片),其实,植树中还有很多有趣的数学问题,这节课,我们就一起来研究“植树问题”。(板书课题:植树问题)
二、共同探究,发现规律
1.绿化小学四年级的同学在植树中就遇到了一些问题,我们先来看看一班的(课件出示:小路全长100米,现要在一边种一行树,每隔5米种一棵(两端都种)。一共需要多少棵树苗?)
(1)理解信息
师:你认为哪些信息重要(关键词刷红)
师:你怎样理解“两端都种”和“每隔5米”
师:两棵树之间的空,我们也叫做间隔(课件),你和我之间有没有间隔,有几个?请你起立,咱们三个之间有几个间隔?
(2)引发猜想。
师:现在大家就试着做一做吧!
(生试做,指名板演)
师:我们请这几位同学分别说说他们是怎么想的
师:这几种做法的相同点是什么?不同点是什么?
师:100 ÷5得到的20到底求的是间隔数还是棵树呢?像这种两端种树的问题,棵树和间隔数之间究竟有什么关系呢?(课件出示)我们进行一次模拟植树活动怎么样?
(3)实验探究
师:可是身边没有树怎么办呢
(用笔、用火柴等)
师:你们真的都很有创意,遇到难解决的问题时,都能想到用身边简单的事物做例子来研究,值得表扬,请看活动要求(出示:活动要求:请选择自己喜欢的方法动手试一试,也可以和同伴们共同研究,思考、交流:你把什么当成了树?种了几棵?有几个间隔?发现棵数和间隔数之间有什么关系?),谁来读读(学生读要求),明确要求了吗?开始吧!
(小组合作,教师巡视,找出典型验证方法)
(4)发现规律
师:看来,大家都研究的差不多了,谁愿意和大家交流一下这几个问题?(边汇报边板演棵数和间隔数)
师:同学们,我们来看这组实验数据,谁能用一句话概括你的发现
师:刚刚我们通过这几种不同的实验活动,都得到了一个共同的结论,就是两端种树时,棵数比间隔数多1,用关系式表示是——棵数等于——间隔数+1(贴图并板书),间隔数等于——(棵数-1),10个间隔几棵树?100个间隔几棵树?100棵树有几个间隔呢?
师:那为什么棵数会比间隔数多1呢
师小结:其实这几位同学用到的是数学中很重要的一种思想,“一一对应”(板书)我们来看,(指板书)一棵树,后面对应一个间隔,一棵树,后面对应一个间隔,最后一棵树后面没有对应的间隔(画弧线),所以,不论有几个间隔,棵数总比间隔数多一。
(5)应用规律
师:应用这个规律,我们来看哪个答案是正确的(第一个)
师:先用——100 ÷5=20,求出——间隔数,再用——20+1=21,求出——棵数(相应板书)那做错的同学错在哪了呢?
(6)梳理方法。
师小结:问题解决了,现在让我们一起梳理一下刚才的学习过程,首先对问题进行大胆地——猜想,再通过——实验,对猜想进行——验证,然后得出科学的——结论,最后应用结论去解决问题(板书:猜想——实验——验证——结论——应用)。这也为我们以后研究问题提供了一些好的方法和思路。你们能用刚刚学到的知识帮助二班和三班解决问题吗?
三、逆向练习,加深理解
出示:
1.四年二班在一条直路的一边植树,计划每隔5米种一棵,需要种21棵树(两端都种),这条直路长多少米?
2.四年三班在全长100米的直路一边植树,计划等距离种21棵树(两端都种),相邻两棵树间隔多少米?
自己读读题,然后解答
(逐个讲评)
四、联系生活,拓展提升
师:刚刚我们解决了几个关于植树的问题,其实生活中还有很多与植树问题类似的现象,想一想,有哪些?
(锯木头摆花(东西)站队上楼梯安路灯等)
师评价:看来你们都有一双善于发现的眼睛,老师也找到了一些,请看(课件出示图片,说清与植树问题的联系)
师:联系我们都找到了,你们想实际解决一下吗
出示:
注意:请自由选择两道题解决,有余力的同学也可以全做。遇到问题可以举例子试试,也可以和同伴共同解决。
1.安装路灯
在全长20xx米的街道两旁安装路灯(两端都装),每隔50米安装一座。一共安装多少座路灯?
2.排队问题
早操时排队,每隔2米排一人,一排有22人。这排队伍是多少米?
3.上楼梯问题
我们班教室在三楼,我们每天从一层到三层一共要走48个台阶,每层有多少个台阶?
4.敲钟问题广场上的大钟5时敲响5下,8秒敲完。12时敲12下,需要多长时间?
师:先读读注意事项,然后解答
(生解答,指名板演)
师:谁来说说你解决的是什么问题?(自选汇报)
师总结:同学们,通过本节课的学习,我们能够解决直路上两端种树以及与之相类似的一些问题,可是四班和五班却遇到了两种不同的情况(课件),他们会遇到什么问题呢?这两种情况下,棵数和间隔数之间又有什么关系呢?我们下节课再来研究!
《植树问题》教学设计优秀4
教学目标:
1.使孩子透过生活中的事例,初步体会解决植树问题的方法。
2.初步培养孩子从实际问题中探索规律,找出解决问题的有效方法的潜力。
3.让孩子感受数学在日常生活中的广泛应用,培养孩子的应用意识和解决问题的潜力。
教学重点:
用解决植树问题的方法解决实际问题。
教学难点:
栽树的棵数与间隔数之间的关系。
教具准备:多媒体课件。
教学过程:
一、谈话导入:
师:同学们,你们喜欢植树吗?你植过树吗?(生答)植树能绿化环境,造福人类。在生活中,常常遇到在路的一边、间隔必须的距离植树,这就需要计算准备多少棵树苗。还有许多类似的问题:比如在公路两旁安装路灯、花坛摆花、站队中的方阵等等,在数学上,我们把这类问题统称为“植树问题”。
二、揭示学习目标:(媒体出示)
1.能根据相关条件,求出需要多少棵树苗或计算两树间的`距离。
2.能利用植树问题,灵活解决生活中类似的实际问题。
三、探究新知:
1.出示例1:同学们在全长100米的小路一边植树,每隔5米栽一棵(两端要栽)。一共需要多少棵树苗?(生读题)
师:你会计算吗?(让孩子回答)你算的对吗?请同学们自己动脑来验证一下。
学习提示:(媒体出示)
①假如路长只有10米,要栽几棵树?如果路长是20米,又要栽几棵树?请你画线段图来看看。
②透过上面的分析,你能找出什么规律?和同桌或小组内说说。
③此刻你能算出一共需要多少棵树苗吗?
④你还有别的想法吗,在小组内说说。
2.孩子自学探讨。(师巡视)
3.班内交流。孩子回答后,师媒体演示间隔数和间隔点数的关系。
总结规律:栽的棵数比间隔数多1。
完成例题。
四、变化巩固:
1.做一做:118页孩子独立完成。订正时说说怎样想的,重点让孩子明确先求出间隔数,即36棵树有35个间隔。
2.122页第2题。独立完成,同桌交流想法,可一生板演。
五、检测反馈:(独立完成)
1.在一条长400米的马路的一边,从头到尾每隔8米种一棵树。一共能够种多少棵树?
2.5路公共汽车行驶路线全长12千米,相邻两站的距离是1千米。一共有几个车站?
3.从王村到李村一共设有16根高压电线杆,相邻两根的距离平均是200米。王村到李村大约有多远?
孩子完成后师批阅订正,发现问题及时解决。
六、总结延伸:
这节课我们学习了植树问题,并能利用植树问题解决生活中类似的实际问题,解答时要重点分清栽树的棵数与间隔数间的关系,后面还有一些不同的状况,期望大家开动脑筋,灵活处理。
《植树问题》教学设计优秀5
一、教学内容:
人教版《义务教育课程标准实验教科书数学》四年级下册“数学广角” 第117—118页。
二、教材目标:
1.通过生活中的事例,知道 “植树问题”的三种不同的情况,理解与掌握间隔数与棵数之间的关系和变化规律。
2.通过具体问题的解决过程,经历观察、比较、发现、概况等数学活动,培 养学生的研究意识和探究能力,感悟化繁为简、数形结合等数学思想方法。
3.能运用规律或研究方法解决相关的实际问题,感受数学在生活中的广泛应 用,培养学生的应用意识和解决实际问题的能力。
三、教学重点:引导学生经历规律的获得过程、建立数学模型,并用所学的方法解决一些简单的实际问题。
四、教学难点:理解间隔数 与棵数之间的关系;解决与植树问题具有相同数学模型的实际问题。
五、教学准备:学习单、多媒体课件、小树和小路模型。
六、 教学过程:
(一) 问题导入:
出示谜语:两棵小树十个杈,不长叶子不开花,能写会算还会画,天天干活不说话。让学生猜一猜:这会是什么呢?
教师组织学生认识手中的间隔,并认识它们存在的规律“间隔数+1”
(二)探究新知:
1.队列问题:
出示学生排着整齐的队伍去植树的图片,引导学生发现学生队伍中存在间隔,通过学生站一站,数一数等形式总结人数和间隔数的关系,再次对应“间隔数+1”
并出示课题。
2.植树问题:
(1)体会“化繁为简”思想:
问题导入:同学们到达目的地,又遇到难题了:在全长1260米的小路的一边植树,每隔5米植一棵,按怎样的方案植,又需要多少棵树呢?
突出矛盾:数字太大,不易思考,引导学生转换较小的数。
明确思想:当遇到复杂的问题,可以转化成简单的问题,这就是“化繁为简”的数学思想。(板书:化繁为简)
(2)设计三种植树方案:
引导学生用学具摆一摆或用线段画一画的形式,同桌两人合作设计植树方案。
①学生活动,教师巡视。
②汇报、展示:
③小结:组织学生对不同方案进行命名,突出其主要特征。
教师板书:两端都种、只种一端、两端不种
(3)探究规律:
①求间隔数:
教师引导学生发现植树过程中的间隔,总结植树棵数和间隔数的关系,再次对应“间隔数+1” 。
在没有植树的棵数时,探究间隔数与全长、间隔的关系。
组织学生独立思考,借助学具、线段图等形式探究规律
a:学生思考并摆学具或画线段或列算式。
b:汇报:
②探究间隔数与棵数的关系:
开放间隔的长度:(出示课件)在20米的小路的一边植树,每隔 米植一棵,一个需要棵树?
小组合作完成探究,活动要求:
1)自己选择适合的间隔长度,四人小组合作完成记录表。
2)小组选择一种植树方式进行探究。
3)可以借助摆学具、画线段、数手指或列算式的'方式。
a:学生小组活动,教师巡视。
b:学生汇报发现规律,教师板书。
c:升华:
三种情况结果不同,但是在求解过程也存在着相同,都是先计算20÷5,这就意味着解决植树问题的关键是明确间隔数。
d:应用:
老师检查同学们的植树情况,他从第1棵树走到第20棵树时,一共走了多少米?
(三)巩固提升:
1.选一选:
下面每一题相当植树问题的哪一种情况?
(1)音乐中的“五线谱”( )
(2)衣服上的纽扣( )
(3)成语“一刀两断”()
(4)自鸣钟九点报时的钟声( )
A.两端都种 ; B.只种一端; C.两端不种。
2. 广场上的大钟5时敲响5下,4秒敲完。12时敲12下,需要 秒。 3. 小法官:
(1)学校的教学楼每层有24个台阶,老师从1楼开始一共走了72个台阶,判断:现在老师走到了3楼。( )
(2)一根10米长的木头,把它平均分成5段,锯一次需2分钟。判断:锯完一共需要10分钟。( )
4.学校一条大路的一边共插了20面彩旗。
(1)如果使两面彩旗中间放一盆花,一共要放多少盆花?
(2)如果要使两盆花之间有一面彩旗,一共要放多少盆花?
(四)课堂总结:
师:今天我们学习了什么?你有什么收获?
生活中还有哪些类似植树问题的现象呢?无论哪些问题,我们都能用今天的方法和策略进行解决,这就是数学的奥秘。
教学反思:
通过现实生活中一些常见的实际问题,让学生从中发现一些规律,抽取出其中的数学模型,然后再用发现的规律来解决生活中的一些简单实际问题。
解决植树问题的思想方法是实际生活中应用比较广泛的数学思想方法。植树问题通常是指沿着一定的路线植树,这条路线的总长度被树平均分成若干段(间隔),由于路线的不同、植树要求的不同,路线被分成的段数(间隔数)和植树的棵数之间的关系就不同。在现实生活中类似的问题还有很多,比如公路两旁安装路灯、花坛摆花、站队中的方阵,等等,它们中都隐藏着总数和间隔数之间的关系问题,我们就把这类问题统称为植树问题。在植树问题中“植树”的路线可以是一条线段,也可以是一条首尾相接的封闭曲线,比如正方形、长方形或圆形等等。本节课着重研究直线上植树的情况。
《植树问题》教学设计优秀6
一、教学内容
教科书P117例1
二、教学目标
1、利用熟悉的生活情境,通过动手操作等实践活动,理解并掌握“两端都要种”的植树问题中间隔数与植树棵数之间的规律。
2、在合作探究中解决问题,建构数学模型,感受数学的简化思想和应用价值。
3、渗透数形结合的思想,培养学生借助线段图来解决问题的意识。
三、教学重点、难点
1、重点:通过探究,发现两端都栽的情况中“棵数=间隔数+1”
2、难点:利用规律来解决生活中的实际问题。
四、教学准备
小棒、课件、练习本、表格
五、教学过程
(一)创设情境,引入学习
1、每个人都有一双灵巧的小手,知道吗,在你的手上,还藏着数学知识呢?请伸出左手找找看,你找到了吗?
(预设生:有5根手指生:有4个空)
像刚才同学们所提到的2根手指间的空格,在数学上我们叫做间隔(板书间隔)
2、生活中很多地方也存在着间隔,你能找到吗?
(预设生1:树木之间有间隔生2:队伍之间生3:栏杆之间也有)指名3人
3、老师也收集了一些(播放课件)
过渡:看来与间隔有关的事物太多了,很有研究的必要,今天这节课我们就来研究与间隔有关的植树问题。(板书课题)
(二)合作探究“两端都栽”的规律
1、①课件出示请看题“学校准备在一条长20米的小路一旁栽树,每隔5米栽一棵(两端都栽),一共需要多少棵树苗?
谁能响亮的读题?
②从题中你了解到了哪些数学信息?
预设生1这条小路总长20米生2每隔5米种一棵(5米就是我们所说的间隔长)生3:两端都栽(什么是两端都栽?2人说)(板书两端都栽)生4:一旁
③能试着列列算式来解决吗?把你的想法列在练习本上。(指名板演)
(预设生1:20÷5+2=6(棵)生2:20÷5+1=5(棵))
还有不一样的吗?也上来写写
说一说你的想法
④我发现你们虽然意见不统一,但是有一步却是相同的,找到了吗?20÷5是什么意思?
指名2人说(板书总长÷间隔长=间隔数)齐读1次
2、①到底哪种答案是正确的,你有什么方法来验证一下,同桌一起讨论一下。
(预设生1:用手掌中的`间隔现象来说明生2:用小棒来模拟种一种
生3:画线段图来验证一下)
方法有很多,但是画线段图是最常见、最一般的方法。
②你打算怎么画,能介绍一下吗?
生介绍,师板画
介绍,我们可以取任意长代表5米,这样5米5米地画,一直画到20米,(出示课件)几个间隔,几棵小树?(4个间隔5棵数)
通过线段图,我们清楚的看出正确答案应该是20÷5+1=5(棵))
3、①如果老师将总长和间隔长进行变换,你能自己迅速画出线段图得出间隔数和棵数吗?
两端都栽的情况下
同桌合作完成表格第2、3两行。
②展示1个学生的作品,课件出示
观察大屏幕上的数据,想一想在两端都栽的情况下,棵数与间隔数存在怎样的规律?
指名3人说(在说时强调条件是两端都栽的情况下)(板书棵数=间隔数+1间隔数=棵数-1)加上条件再齐读一次
4、验证规律
①在两端都栽的情况下,是不是棵数与间隔数都存在这种规律呢?想自己再来验证一下吗?
②请在表格的剩余两行自设总长和间隔长画一画线段图(注意你所设制的总长必须要能被间隔长整除)想一想怎样才能提高速度,间隔数太多了好不好?
③同桌再次合作,教师巡视
④汇报,教师记录结果
⑤通过这些数据,你有什么要说的吗?为什么棵数总比间隔数多1?
700个间隔,几棵树?1000棵数几个间隔?
(三)练习生活,拓展应用
生活中有很多类似问题也能用植树问题的规律来解决,比如装路灯,设车站,做楼梯,锯木头等等,一起去看看吧!
1、在一条全长400米的街道两旁挂灯笼,每隔8米挂一个(两端都挂),一共需要多少个灯笼?女生读题学生独立列式,说一说你的理解
2、刘翔一共要跨10个栏,每两个栏之间的间隔长是10米,求从第一个栏到最后一个栏一共有多长?男生读题刚才求的是棵数,现在求的是(总长)要求总长必须知道什么条件独立列式,汇报结果,说说理解。
3、你看过钟表吗?
你听——当当,这是几时;当当当这是几时,有几个间隔?
在钟声里也有数学问题,一起去看看吧!
出示广场上的大钟5时敲响5下,敲响第一下到第五下用了8秒,12时敲响了12下,需要多长时间?
(四)课堂小结,留下悬念
1、这节课同学们都表现得非常认真,积极,想一想在这节课上你有什么收获?
2、收获那么多,老师真为你感到高兴,其实植树问题中还有很多数学问题,你比如说一头栽一头不栽,两头都不栽,在封闭图形上栽等等,他们又存在怎样的规律?就让我们带着对这些问题的思考迎接下节课的学习吧!
《植树问题》教学设计优秀7
教学目标:
1、通过探究发现一条线段上两端都种、只种一端、两端不种三种情况植树问题的规律。
2、使学生经历和体验“复杂问题简单化”的解题策略和方法。
3、感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题。
教学重、难点:
发现植树的棵数和间隔数之间的关系,并用发现的规律解决实际问题。
教学过程:
一、创设情境——培养意识
1、师:同学们好!一起来看两组画面。
(给学生播放荒漠化严重的和绿化优美的两组图片。)
师:看了这两组画面,你更喜欢哪一种呢?
师:怎样才能拥有这样美丽的环境呢?
生:植树。
师:植树造林,保护环境,让我们拥有一个充满鸟语花香的绿色花园是我们每个人都应尽的义务!
师:说到植树,大家知道吗?在我们数学王国里,植树可是有一定的学问的,这节课我们就来探讨“植树问题”。——板题
2、出示教学目标
3、师:见过路边种树吗?一般情况下,每两棵树间距离怎样呢?(相等)一般情况下路边植树每两棵树之间的距离都是相等的,我们也可以叫做等距离植树。
师:在路的一边等距离地植树会有几种情况呢?大家想不想亲手种种看?
二、动手种树——探讨规律
1、动手“种”树
师:大家先看老师为大家准备的材料……(师介绍)
出示操作要求:在路的一边,等距离植树,种完后小组里交流看看有几种情况?
学生动手植树,师巡视。
2、交流方案
小组上台展示自己组的种树方案。
两端都种
两端不种
只种一端
3、仔细观察,每棵树之间都有间隔,那么植树的棵数跟间隔数之间有什么联系?
生仔细观察,得出猜想:两端都种棵数=间隔数+1
两端不种棵数=间隔数-1
只种一端棵数=间隔数
三、验证规律
1、师:通过仔细观察,我们得出了自己的.猜想。但是,每一种猜想在没有验证之前,也只能是一种猜想,我们只有通过验证,才能让猜想成为科学,对于我们刚才总结出的规律也必须通过验证才能得出正确结论。下面,让我们一起动手来验证我们的猜想。
2、完成验证表格。
师出示:这是一张验证表格,就请大家在小组内共同合作,一起探究,并展示你们组总结出的规律。(出示验证事项)
3、小组合作探究。
4、展示。
分三种情况汇报。
5、梳理规律
师:同学们,在一条路的一边植树的三种规律我们都找出来了,我们一起来研究一下,它们之间有没有什么关系?
相同点:都与间隔数有关
不同点:两端都种要用间隔数+1;只种一端就等于间隔数;两端不种就要用间隔数-1
师:这三种情况是不同的,我们在解决问题时,要注意具体情况具体分析。
四、解决问题
师:知道在路的一边植树有三种情况,对于下面的信息,你会提出什么样的数学问题呢?
1、处理信息
问题情境:这是实验小学刚建好的一条校道(配图),看到这光秃秃的校道你会想到什么呢?
生:种树!
出示信息:实验小学准备在一条长150米的校道一旁种树,每隔5米种一棵
师:根据这些信息你会提什么数学问题呢?
生:一共可以种多少棵树?
得不完整例题:
实验小学准备在一条长150米的校道一旁种树,每隔5米种一棵,一共需要多少棵树苗?
师:看着这道题,谁有话想说吗?
生1:两端都种
得完整例题:实验小学准备在一条长150米的校道一旁种树,每隔5米种一棵,两端都种,一共需要多少棵树苗?
师:受他的启发,还能提出什么样的问题?
生2:实验小学准备在一条长150米的校道一旁种树,每隔5米种一棵,只种一端,一共需要多少棵树苗?
生3:实验小学准备在一条长150米的校道一旁种树,每隔5米种一棵,两端不种,一共需要多少棵树苗?
师:三种情况大家都想到了。大家再看看这条校道,你认为采取哪种方案更合适一些呢?
生:两端都种
2、抽取问题
出示例题:(配图片)
实验小学准备在一条长150米的跑道一旁种树,每隔5米种一棵,两端都种,一共需要多少棵树苗?
师:愿意帮学校算算吗?
3、学生试解。
4、汇报交流。
生汇报,师:能说说你的解题思路吗?
师:刚才我们从小的数据入手,探讨出规律,然后再用规律来解决数据大的问题。这种思路正是数学上常用的“以小见大”。
师:大家学会了这种方法吗?我们再来考验考验自己的掌握情况好不好?
5、探讨只种一端
师:如果学校想在这路的末尾建一座供师生休息用的小亭子,那又应该选用哪一种植树方案更合理?
生:只种一端。
(实验小学准备在一条长150米的跑道一旁种树,每隔5米种一棵,只种一端,一共需要多少棵树苗?)
学生试解。
6、探讨两端不种
师:我们再接再厉,学校后来还要在这条校道的另一端筑一个墙报,请大家想想,应采用哪种方案更合适呢?
生:两端不种。
(实验小学准备在一条长150米的跑道一旁种树,每隔5米种一棵,两端不种,一共需要多少棵树苗?)
学生试解。
五、小结方法——提升认识
1、探讨方法
师:大家能通过自己的努力把这么一道新的问题解决,我们应该感到高兴!但是老师认为还有更重要的方法更需我们去总结!
师:大家再回头看看,我们是怎样一步一步把植树问题给解决的?
(动手操作——提出猜想——画图验证——得出规律——解决问题)
2、阅读课本
(1)阅读例1
师:今天我们学习的就是课本117页开始的数学广角,请大家打开书本。
师:课本上的同学们遇到了什么问题,他们又是采取什么样的办法来解决的?
生:画图,找规律。
师:真是好方法!大家掌握了吗?
(2)阅读例2
师:阅读118页例2,看看课本中的孩子又遇到了什么问题,你能帮他们解决吗?
生完成,交流。
六、拓展练习
1、听说大家聪明能干,又乐于助人市政规划局的同志找来了,他呀,想请大家帮个忙,(出示119页做一做1)
2、生尝试解答。
3、全班交流。
七、全课小结
师:通过今天的学习,你有什么收获呢?
生畅谈自己的收获。
师小结:收获方法比收获知识更重要,祝贺大家!
板书设计:
植树问题
两端都种棵数=间隔数+1
两端不种棵数=间隔数-1
只种一端棵数=间隔数
【《植树问题》教学设计优秀】相关文章:
《植树问题》教学反思01-15
植树问题教学反思10-30
《相遇问题》教学设计12-31
《相遇问题》教学设计11-15
解决问题教学设计01-19
《纳税问题》教学设计范文12-03
植树问题说课稿03-03
《植树问题》教案01-23
广角植树问题说课稿04-08
《画》优秀教学设计01-21