当前位置:范文网>教学资料>教学设计>初中数学教学案例

初中数学教学案例

时间:2024-12-13 12:26:10 教学设计 我要投稿

初中数学教学案例

初中数学教学案例1

  一、教学目的:

初中数学教学案例

  1、理解并掌握菱形的定义及两个判定方法;会用这些判定方法进行有关的论证和计算;

  2、在菱形的判定方法的探索与综合应用中,培养学生的观察能力、动手能力及逻辑思维能力.

  二、重点、难点

  1、教学重点:菱形的两个判定方法.

  2、教学难点:判定方法的证明方法及运用.

  三、例题的意图分析

  本节课安排了两个例题,其中例1是教材P109的例3.例2是一道补充的题目,这两个题目都是菱形判定方法的直接的运用,主要目的是能让学生掌握菱形的判定方法,并会用这些判定方法进行有关的论证和计算.这些题目的推理都比较简单,学生掌握起来不会有什么困难,可以让学生自己去完成.程度好一些的班级,可以选讲例3.

  四、课堂引入

  1、复习

  (1)菱形的定义:一组邻边相等的平行四边形;

  (2)菱形的性质1:菱形的四条边都相等;

  性质2:菱形的对角线互相平分,并且每条对角线平分一组对角;

  (3)运用菱形的定义进行菱形的判定,应具备几个条件?(判定:2个条件)

  2、【问题】要判定一个四边形是菱形,除根据定义判定外,还有其它的判定方法吗?

  3、【探究】(教材P109的探究)用一长一短两根木条,在它们的中点处固定一个小钉,做成一个可转动的十字,四周围上一根橡皮筋,做成一个四边形.转动木条,这个四边形什么时候变成菱形?

  通过演示,容易得到:

  菱形判定方法1对角线互相垂直的平行四边形是菱形.

  注意此方法包括两个条件:(1)是一个平行四边形;(2)两条对角线互相垂直.

  通过教材P109下面菱形的作图,可以得到从一般四边形直接判定菱形的方法:

  菱形判定方法2四边都相等的四边形是菱形.

  五、例习题分析

  例1(教材P109的例3)略

  例2(补充)已知:如图ABCD的'对角线AC的垂直平分线与边AD、BC分别交于E、F.

  求证:四边形AFCE是菱形.

  证明:∵四边形ABCD是平行四边形,∴AE∥FC.

  ∴∠1=∠2.

  又∠AOE=∠COF,AO=CO,∴△AOE≌△COF.

  ∴EO=FO.

  ∴四边形AFCE是平行四边形.

  又EF⊥AC,∴AFCE是菱形(对角线互相垂直的平行四边形是菱形).

  ※例3(选讲)已知:如图,△ABC中,∠ACB=90°,BE平分∠ABC,CD⊥AB与D,EH⊥AB于H,CD交BE于F.

  求证:四边形CEHF为菱形.

  略证:易证CF∥EH,CE=EH,在Rt△BCE中,∠CBE+∠CEB=90°,在Rt△BDF中,∠DBF+∠DFB=90°,因为∠CBE=∠DBF,∠CFE=∠DFB,所以∠CEB=∠CFE,所以CE=CF.

  所以,CF=CE=EH,CF∥EH,所以四边形CEHF为菱形.

  六、随堂练习

  1、填空:

  (1)对角线互相平分的四边形是;

  (2)对角线互相垂直平分的四边形是________;

  (3)对角线相等且互相平分的四边形是________;

  (4)两组对边分别平行,且对角线的四边形是菱形.

  2、画一个菱形,使它的两条对角线长分别为6cm、8cm.

  3、如图,O是矩形ABCD的对角线的交点,DE∥AC,CE∥BD,DE和CE相交于E,求证:四边形OCED是菱形。

  七、课后练习

  1、下列条件中,能判定四边形是菱形的是

  (A)两条对角线相等(B)两条对角线互相垂直

  (C)两条对角线相等且互相垂直(D)两条对角线互相垂直平分

  2、已知:如图,M是等腰三角形ABC底边BC上的中点,DM⊥AB,EF⊥AB,ME⊥AC,DG⊥AC.求证:四边形MEND是菱形.

  3、做一做:

  设计一个由菱形组成的花边图案.花边的长为15cm,宽为4cm,由有一条对角线在同一条直线上的四个菱形组成,前一个菱形对角线的交点,是后一个菱形的一个顶点.画出花边图形.

初中数学教学案例2

  一、说教材

  1.地位和作用

  本节教材是人教版,初中数学八年级下册第19章第1节的内容,是初中数学的重要内容之一。平行四边形是一种重要的数学思想,在实际生活中有着广泛的应用,是初中教学的重点和难点,在教材中有举足轻重的地位。本节课所学内容,是在学习了平行四边形的性质的基础上,对平行四边形的判定进一步拓展;另一方面又为其他四边形的教学打下基础,做好铺垫,在教学中起着承前启后的作用。

  2.教学重点和难点

  本节课的`重点是:平行四边形的判定定理及应用

  难点是:平行四边形的判定的推导过程(这点要求比较难)

  我将通过问题情境的设计,课堂实验研讨,来引导学生发现、分析和解决问题。

  根据去年国家教育部颁布的,新数学课堂标准的理念,学生学习的目标应将知识与技能、方法与过程、情感态度价值观这三方面融为一体,为了落实这几点,我们本节课的教学目标如下

  3.教学目标

  1)掌握

  2)探索,由此发现充满着探索性和挑战性。(方法与过程)

  3)经过自主探索和合作交流,敢于发表自己的观点,能从交流中获益。(情感态度价值观)这样制定教学目标,让学生亲身经历将实际问题抽象成数学问题,并进行理解与应用的过程,增加他们对问题的感性认识。通过推理论证,提高学生的理性认识,培养学生良好的个性品质(这包括大胆猜想、勇于探索、创新精神、顽强的学习毅力等)。

  总之,我这节课更注重学生学习方式的转变,变接受式学习为自主式学习、合作式学习、探究式学习。针对这节课我采用以下教学方法

  二、说教法

  情境教学法、课堂研讨法

  让学生处于具体的教学情境之中,把抽象的数学知识,适当的形象化,这就相当于为学生提供一个场所,从多种感观获取信息,体验我们的数学活动。可以从以下三方面得到体验:

  1)培养学生的自学能力

  2)落实学生的主体地位,促进学生的主动发展

  3)为培养学生的创新意识与创新能力奠定基础

  从整体课堂来看,我们这节课很关注学生的发展,古人说:“学贵有方”

  三、说学法

  老师传授给学生的不应只是知识内容,更重要的是,指导学生一些数学的学习方法。我遵循“教师为主导、学生为主体、质疑为主线”的教学思路,进行学法的指导。指导学生如何将实际问题转化为数学问题,明白数学与人类的密切关系,指导学生通过类比、猜想、推理等思维进行教学。

  在我的课堂教学中,我会以学生的发展为本,以学生的活动为主线,让学生充分参与到课堂活动中来,为了落实这几点,我按以下5个阶段来,完成本课教学过程

  四、说教学过程

  1阶段:创设情境、引入新课

  我将灵活运用温故而知新,承接前后章,展示情境,结合实际生活,引入新课。

  2阶段:新课教学(通过合作性学习进行教学。心理学研究表明,在合作性学习中,学生不再是学习上的竞争对手,而是共同提高的合作者,这不仅对他们的学业会有帮助,在人格的培养上也很有可取之处。)

  3阶段:课堂实践

  我将通过:首先和学生们一起议一议(平行四边形性质的简单利用)

  最后再和学生们共同完成练一练(随堂练习,基础训练、创新训练)

  4阶段:课堂小结(让学生谈谈本节学到什么、收获什么,教师点评,以达到加深知识的理解)

  5阶段:布置作业(达到复习巩固新知识的目的)

  五、教学反思

  本节课我遵循“教师为主导、学生为主体、质疑为主线”的教学思路,培养学生的主动学习能力、动手操作能力、逻辑推理能力等。通过课堂学习,及时发现学生,在学习探究过程中遇到的问题,给予指导帮助,从而维持学生学习的积极性。以上是我对本节课的理解,不足之处,请各位评委老师指正。我的说课完毕,谢谢大家!

初中数学教学案例3

  一、教学目标:

  1、知道一次函数与正比例函数的定义。

  2、理解掌握一次函数的图象的特征和相关的性质。

  3、弄清一次函数与正比例函数的区别与联系。

  4、掌握直线的平移法则简单应用。

  5、能应用本章的基础知识熟练地解决数学问题。

  二、教学重、难点:

  重点:初步构建比较系统的函数知识体系。

  难点:对直线的平移法则的理解,体会数形结合思想。

  三、教学过程:

  1、一次函数与正比例函数的'定义:

  一次函数:一般地,若y=kx+b(其中k,b为常数且k≠0),那么y是一次函数。

  正比例函数:对于y=kx+b,当b=0.k≠0时,有y=kx,此时称y是x的正比例函数,k为正比例系数。

  2、一次函数与正比例函数的区别与联系:

  (1)从解析式看:y=kx+b(k≠0.b是常数)是一次函数;而y=kx(k≠0.b=0)是正比例函数,显然正比例函数是一次函数的特例,一次函数是正比例函数的推广。

  (2)从图象看:正比例函数y=kx(k≠0)的图象是过原点(0.0)的一条直线;而一次函数y=kx+b(k≠0)的图象是过点(0.b)且与y=kx

  平行的一条直线。

  基础训练:

  1、写出一个图象经过点(1.—3)的函数解析式为:

  2、直线y=—2X—2不经过第象限,y随x的增大而。

  3、如果P(2.k)在直线y=2x+2上,那么点P到x轴的距离是:

  4、已知正比例函数y=(3k—1)x,若y随x的增大而增大,则k是:

  5、过点(0.2)且与直线y=3x平行的直线是:

  6、若正比例函数y=(1—2m)x的图像过点A(x1.y1)和点B(x2.y2)当x1y2.则m的取值范围是:

  7、若y—2与x—2成正比例,当x=—2时,y=4.则x=时,y=—4.

  8、直线y=—5x+b与直线y=x—3都交y轴上同一点,则b的值为。

  9、已知圆O的半径为1.过点A(2.0)的直线切圆O于点B,交y轴于点C。

  (1)求线段AB的长。

  (2)求直线AC的解析式。

初中数学教学案例4

  教学目标:

  1、在现实情境中理解线段、射线、直线等简单图形(知识目标)

  2、会说出线段、射线、直线的特征;会用字母表示线段、射线、直线(能力目标)

  3、通过操作活动,了解两点确定一条直线等事实,积累操作活动的经验,培养学生的兴趣、爱好,感受图形世界的丰富多彩。(情感态度目标)

  教学难点:

  了解“两点确定一条直线”等事实,并应用它解决一些实际问题

  教具:

  多媒体、棉线、三角板

  教学过程:

  情景创设:

  观察电脑展示图,使学生感受图形世界的丰富多彩,激发学习兴趣。

  如何来描述我们所看到的现象?

  教学过程:

  1、一段拉直的棉线可近似地看作线段

  师生画线段

  演示投影片1:

  ①将线段向一个方向无限延长,就形成了______

  学生画射线

  ②将线段向两个方向无限延长就形成了_______

  学生画直线

  2、讨论小组交流:

  ①生活中,还有哪些物体可以近似地看作线段、射线、直线?

  (强调近似两个字,注意引导学生线段、射线、直线是从生活上抽象出来的)

  ②线段、射线、直线,有哪些不同之处,有哪些相同之处?

  (鼓励学生用自己的语言描述它们各自的特点)

  3、问题1:图中有几条线段?哪几条?

  “要说清楚哪几条,必须先给线段起名字!”从而引出线段的记法。

  点的记法:用一个大写英文字母

  线段的记法:

  ①用两个端点的字母来表示

  ②用一个小写英文字母表示

  自己想办法表示射线,让学生充分讨论,并比较如何表示合理

  射线的记法:

  用端点及射线上一点来表示,注意端点的字母写在前面

  直线的记法:

  ①用直线上两个点来表示

  ②用一个小写字母来表示

  强调大写字母与小写字母来表示它们时的`区别

  (我们知道他们是无限延长的,我们为了方便研究约定成俗的用上面的方法来表示它们。)

  练习1:读句画图(如图示)

  (1)连BC、AD

  (2)画射线AD

  (3)画直线AB、CD相交于E

  (4)延长线段BC,反向延长线段DA相交与F

  (5)连结AC、BD相交于O

  练习2:右图中,有哪几条线段、射线、直线

  4、问题2请过一点A画直线,可以画几条?过两点A、B呢?

  学生通过画图,得出结论:过一点可以画无数条直线

  经过两点有且只有一条直线

  问题3如果你想将一硬纸条固定在硬纸板上,至少需要几根图钉?

  为什么?(学生通过操作,回答)

  小组讨论交流:

  你还能举出一个能反映“经过两点有且只有一条直线”的实例吗?

  适当引导:栽树时只要确定两个树坑的位置,就能确定同一行的树坑所在的直线。建筑工人在砌墙时,经常在两个墙角分别立一根标志杆,在两根标志杆之间拉一根绳,沿这根绳就可以砌出直的墙来。

  5、小结:

  ①学生回忆今天这节课学过的内容

  进一步清晰线段、射线、直线的概念

  ②强调线段、射线、直线表示方法的掌握

  6、作业:

  ①阅读“读一读”P121

  ②习题4的1、2、3、4作为思考题

【初中数学教学案例】相关文章:

初中数学教学案例07-22

初中数学教学案例01-24

初中数学教学案例详解02-28

(精华)初中数学教学案例10篇07-20

初中数学教学案例(集锦10篇)07-21

数学案例教学03-06

草原的初中教学案例02-27

数学教学案例及其撰写01-18

数学教学案例(三篇)02-27

小学数学教学案例与反思01-23