当前位置:范文网>优秀作文>写作素材>名人故事>数学的名人故事

数学的名人故事

时间:2024-06-24 08:23:12 名人故事 我要投稿

数学的名人故事【集锦15篇】

数学的名人故事1

  假设你完全不知道地球的地理情况,你一次又一次派出远征的船队,这些船队接连发现新的大陆,直到已知大陆的数量增长到6块。可是你并不知道这是否就是地球上所有的大陆。你继续派出船队,前前后后出征了几百次,但是他们没有发现任何新的大陆。这时你提出一个猜想:地球上没有更多的大陆了。

数学的名人故事【集锦15篇】

  这个猜想看起来很合理,但是它仍需要被论证。这时,格里戈里·佩雷尔曼出现了,他用完美的严密方式向你和全世界证明,地球上确实没有更多的大陆了。

  以上是俄罗斯数学家米哈伊尔·格罗莫夫的一个比方。现实中的佩雷尔曼并不是一名地理学家,而是一名数学家。他在数学上所做工作的重要性完全不亚于上面的这个比方——他通过缜密的步骤证明了“庞加莱猜想”的正确性。

  一

  1966年,佩雷尔曼出生于苏联的一个犹太人家庭,他的母亲是大学里的数学教师。

  如何向孩子讲述生活的残酷,是常常令家长头疼的问题。佩雷尔曼的母亲选择了一种特别的方式——她把自己头脑中的正确世界当作真实的世界告诉年幼的佩雷尔曼。

  社会生活中模糊的变数是佩雷尔曼难以理解的,这一点在他年幼时就已经形成。他的数学俱乐部老师鲁克辛每周会有两个晚上与佩雷尔曼一同乘火车回家。冬天的时候,佩雷尔曼会戴一顶苏联流行的皮帽子,在耳朵的部位,帽子有两块皮子,用绳子系紧之后能够防止耳朵受冻。鲁克辛发现,即便在温暖的车厢里,佩雷尔曼也从不解开绳子。“他不仅不会摘掉帽子,”鲁克辛在一本书中说,“他甚至不会解开帽子的护耳,他说不然的话,他妈妈会杀了他,因为他妈妈说了,不要解开绳子,不然就会感冒。”

  鲁克辛曾经批评佩雷尔曼读书不够多,他认为他的职责不单是教孩子们数学,还应该教文学和音乐。佩雷尔曼就问鲁克辛,为什么要读那些文学书。鲁克辛告诉他,因为这些书是“有趣的”,而佩雷尔曼的回答是,需要读的书应该都被列在学校的必读书单上了。

  也是由于看到佩雷尔曼这样的个性,鲁克辛作为一名数学竞赛的教练,他从来不用担心佩雷尔曼在数学训练中会存在“分心”的状况。佩雷尔曼确实从不分心。他的同班男孩们长大一些后开始与女孩子们接吻,鲁克辛就常常去抓他们,但佩雷尔曼从不对女孩子感兴趣。

  佩雷尔曼的另一条行事原则是,必须讲出完整的事实,不然的话,他便认为那可能是政治。在参加全苏联数学竞赛的时候,每个学生会被发给一道题目,谁解出来了便对老师举手示意,然后老师把他带到教室外面。他把解法讲给老师,如果正确,老师就会发给他下一道题,如果错误,就继续回去做这道题,最终看谁在规定时间内解出的题目最多。有一次,佩雷尔曼解出了题目,老师把他叫到外面,他向老师解释一番之后,老师说了句“正确”便转身要回教室。可佩雷尔曼却把老师叫住,他说,这道题还有另外3种可能的结果!他坚持要把所有的可能性告诉老师,即使对于数学竞赛来说这样做等于浪费时间。

  二

  即便是在“怪人”云集的数学家群体中,佩雷尔曼也是一个特殊的“怪人”。他似乎永远都穿同一件衣服,胡子拉碴,不剪指甲——他认为这样才是指甲的自然状态。他的食物只有面包和酸奶。美国的面包对他来说可能并不好吃,好在他找到了一家售卖正宗俄罗斯面包的商店,并且经常步行一段距离到那里买面包。因此,他把几乎所有的津贴都留在银行里(这为他积蓄了一笔钱,保证在后来的一段时间里他能在俄罗斯衣食无忧)。

  佩雷尔曼一辈子都没有离开过他的母亲。在纽约做博士后期间,他的母亲随他来到美国,住在布鲁克林,照顾佩雷尔曼的日常生活。

  1993年,佩雷尔曼解决了数学上一个长期存在的问题——“灵魂猜想”。这是一个由杰夫·齐杰和另一名数学家提出来的猜想。在20年的时间里,已经有一些人写了长篇大论来分析这个问题,但仅仅做出部分的证明。佩雷尔曼则做了一个能够让所有人惊讶不已的完整证明——他只用了4页纸!

  三

  20xx年5月,佩雷尔曼回到了圣彼得堡,他与他少年时代的数学老师鲁克辛一起散步,他告诉老师,他对数学界感到失望。20xx年12月,在没有明确原因的情况下,佩雷尔曼辞去了俄罗斯科学院Steklov数学研究所的职务。

  从此,佩雷尔曼“消失”了。他平时只与自己的母亲和老师鲁克辛交谈。“只要我不是惹人注意的,我就有选择。”有一次佩雷尔曼说道,“或者去做某种丑陋的事情,或者,如果我不做这种事,我就会被像宠物一样对待。现在,我成了引人注意的人,我不能再做保持沉默的宠物。这就是我要退出的原因。”

  20xx年,因佩雷尔曼对“庞加莱猜想”的'证明取得重大突破,国际数学联合会决定授予佩雷尔曼菲尔兹奖。这是数学界的最高奖项,有人称它为数学界的诺贝尔奖。但是佩雷尔曼拒绝了。国际数学联合会主席约翰·保尔飞去圣彼得堡,试图说服佩雷尔曼领奖,但是没有成功。

  20xx年,克雷数学研究所宣布了7个“千年难题”,并承诺若有人解决任何一个难题,就奖励100万美元。其实在所长詹姆斯·卡尔森看来,此举在很大意义上是个噱头,他只是想通过这样的方式来激发人们对数学的关注,并没有指望这些问题中的任何一个能够在他的有生之年中得到解决,也没想到百万美元真的能够发出去。

  几年之后,佩雷尔曼就解决了其中的一个。同时,佩雷尔曼也为卡尔森出了道难题:佩雷尔曼不答应领奖。

  于是,卡尔森去了圣彼得堡。但是他没有见到佩雷尔曼。他怀着一线希望,通过电话与佩雷尔曼交谈,希望佩雷尔曼能够接受这100万美元。佩雷尔曼静静地听他讲,他一直是一个有礼貌的人。最后佩雷尔曼告诉卡尔森,他需要考虑一下,如果决定领奖,会第一时间通知克雷研究所的。

  现在看来,佩雷尔曼的回答只是出于礼貌,他从一开始就没有打算去领奖。

  英国《每日邮报》20xx年3月份的报道说,佩雷尔曼紧闭家门,在屋内对外面采访的记者说:“我应有尽有。”

  “佩雷尔曼对公共场面和财富的厌恶令许多人迷惑不解。”康奈尔大学数学家瑟斯顿在20xx年千禧数学奖颁奖仪式上说,“我没有跟他讨论过这个问题,也不能代表他发言,但是我想说,我对他内心的强大与清晰感到共鸣并表示敬仰。他能够了解和保持真实。我们真实的需求位于内心深处,然而现代社会中的我们大多在条件反射式地不断地追逐财富、消费品和虚荣。我们在数学上从佩雷尔曼那里学到了东西。或许我们也应该暂停脚步,从佩雷尔曼对生活的态度上反思自己。”

数学的名人故事2

  张衡是我国汉朝时期一位非常出名的大文豪,与司马相如、杨雄和班固并称汉赋四大家。张衡的《二京赋》、《思玄赋》和《归田赋》等都是流传千年的文学佳品,至今仍被无数的文人墨客把玩赏析。

  有的人觉得,文科和理科往往难以并重,那么张衡可能会打破这些人的固有印象。张衡不仅在文学上展现了非凡的成就,天文学、地理学和数学上,张衡也取得了丰硕的成果,成为一代数学家。

  张衡自小兴趣广泛,自学《五经》,贯通六艺,而且喜欢研究算学、天文、地理和机械制造等。在青年时期,他的志趣大半在诗歌、辞赋、散文上,他才高于世,却没有骄傲之情。

  《后汉书》提到,张衡曾写过一部《算罔论》,可惜这本书在唐代失传了。我们从《九章算术·少广》章第二十四题的刘徽注文中得知有所谓“张衡算”。

  从刘徽的这篇注文中知道,张衡给立方体定名为质,给球体定名为浑。张衡研究过球的外切立方体积和内接立方体积,研究过球的`体积,其中还确定了圆周率值为10的开方,虽然这个值比较粗略,但却是中国第一个理论求得π的值。

数学的名人故事3

  1982年,18岁的马云迎来了生命里的第一次高考。不过马云并没因数学不好而退缩,反而做出了一个令人惊讶的举动,因为在他的报考志愿表上赫然写着:北京大学。

  当那年的高考成绩出来以后,马云也算创造了个小奇迹,他的数学成绩是1分。

  心灰意冷的马云和他一个表弟一起去宾馆应聘服务生,结果因为长得有点儿歪瓜裂枣的意思,愣是让老板给拒绝了。没办法,他通过找关系,才做了一份给出版社送书的活儿。也许一辈子也就这样了。

  但是这时候路遥的.《人生》改变了马云的想法,马云开始了艰苦的复读,并在19岁那年,再次走进了高考的考场。不过他的数学成绩嘛……高考成绩出来以后,马云的数学成绩实现了同比1800%的迅猛增长——19分!

  接着,马云又开始了一边打工一边复习的日子。就这样,到了马云20岁那年,他毅然参加了第三次高考。在马云高考的前一天,有一位姓余的老师对马云说,就你这个数学成绩,能考及格了我就把姓儿倒过来写。无论这老师是什么心态,马云是被刺激得够呛,他想出了一个绝招。

  在考数学之前,马云背下了10个基本数学公式,考试开始以后就一个一个往公式里套。用这种独门绝技,马云这次数学的考试成绩还真就及格了——79分。

  虽然马云这回数学成绩大幅提高,不过他总分数比本科线还是差5分。唉,也行啊,马云心想,有所大学上就不错了,管他是本科还是专科,也算圆了自己的一份坚持。就当马云准备进杭州师范的时候,又发生了一件事。

  当年杭州师范英语系由于刚升到本科,以至于报考的学生竟然不够招生数。于是校领导做了一个令马云感觉是天上掉馅饼的决定,那就是让几个英语成绩好的专科生直升本科。于是,英语成绩很牛的马云光荣地以本科生的身份踏进了杭州师范。

数学的名人故事4

  数学名人故事:解开神秘的面纱

  读完这本数学名人故事,我被深深吸引。书中描述了数学家们如何克服困难,追求真理。故事中的人物形象生动,背景设置丰富,让人感受到数学世界的.奇妙。

  我特别喜欢书中的主人公们,他们勇敢地探索未知领域,用智慧和勇气揭示了数学世界的奥秘。他们的故事让我感受到了数学的魅力和力量。

  总的来说,这本数学名人故事是一本好书,适合所有对数学感兴趣的人。它让我对数学有了更深的了解和欣赏。我期待继续阅读更多关于数学的故事,进一步探索这个神秘而美妙的领域。

数学的名人故事5

  唐僧师徒四人走在无边无际沙漠上,他们又饿又累,猪八戒想:如果有一顿美餐该有多好啊!孙悟空可没有八戒那么贪心,悟空只想喝一杯水就够了。孙悟空想着想着,眼前就出现了一户人家,门口桌上正好放了一杯牛奶,孙悟空连忙上前,准备把这杯牛奶喝了,可主人家却说:“大圣且慢,如果您想喝这杯奶就必须回答对一道数学题。孙悟空想,不就一道数学题吗,难不倒俺老孙。孙悟空就答应了。那位主人家出题:倒了一杯牛奶,你先喝了1/2加满水,再喝1/3,又加满水,最后把这杯饮料全喝下,问你喝牛奶和水哪个多些?为什么?

  孙悟空一看,挠挠头,不一会儿功夫就算出来了,并且喝到了这杯牛奶。同学们,你知道答案吗?试试看。

  公元前46年,罗马统帅儒略· 恺撒指定历法。由于他出生在7月,为了表示他伟大,决定将7月改为“儒略月”,连同所有单月都规定为31天,双月为30天。这样一年多出一天,2月是古罗马处死犯人月份,为了减少处死人数,将2月减少1天,为29天。

数学的名人故事6

  贫寒出身的老数学家

  复旦大学名誉校长、中国数学会名誉理事长、中国科学院院士的苏步青(-)是一位德高望重的老数学家。他除了当民盟中央参议委员会主任之外,也是中国第七、八届全国政协副主席。

  他出生在浙江省平阳县腾蛟区带溪乡的一个农民家庭,他父母生了13个子女,他是次子。童年就要帮助家人割草、喂猪、放牛。由于家庭贫穷,六岁未能上学。他每天放牛路过私塾,就偷偷跑到窗口去偷看偷听老师教书。后来父亲看到他这么爱念书,在他9岁时全家吃杂粮,省下大米,借了几块钱,挑了一担米,带他到离家100里的平阳县唯一的一所小学当插班生。

  他认识了一些字后,就自己找书看,读《三国演义》、《水浒传》,甚至谈狐说鬼小孩子不容易懂的《聊斋志异》也被他翻阅了一二十遍。

  振作读书发奋图强

  平阳县的语言有一个奇特的现象:在苏步青的乡下人们是讲闽南话,两三百年前,闽南漳州泉州南安有一批人为了避倭乱移民到那一带,因此在浙南闽北交界地区有一些人是讲温软闽南话,而在县城里的人是讲音量大而发音怪的温州话,这两种语言的差距就像意大利语和俄罗斯语。开始苏步青从穷山沟里来到县城,就像刘姥姥进大观园事事感到新奇,整天玩耍无心读书,再加上语言隔阂,结果期末考试,是全班32人中最后一名。

  第二年,离他家乡10多里的水头镇,办起了一所中心小学,他的父亲把他转到那儿上课,老师讲书是用闽南话,苏步青上课是听得懂。可是由于家穷被老师看不起,有一次在作文时,苏步青认真的'写了一篇文情并茂的文章,老师却说他抄袭,后来问明老师仍不公正的批个“差”的分数,这损害了小苏步青的自尊心,以后他不听课,并尽情玩耍,当然这学年他又是考最后一名。

  第三年来了一个新的叫陈玉峰的老师,发现了他的问题,就劝告他应该人穷志不穷,努力读书好好向上,不然浪费了农民爸爸的血汗钱,辜负了父母对他读书识字的期望,以后目不识丁怎能改变贫苦的命运?

  苏步青看到陈老师对他有爱心及勉励,决定收敛贪玩的心,决定振作发奋图强,不要让陈老师失望。除了读课本之外,他也读了一些古典小说,并且开始读《东周列国志》,有些字不懂,他步行几十里山路,向人借《康熙字典》。放假,他就回家放牛,在牛背上他就背诵《千家诗》、《唐诗三百首》,他的记忆力特好,过了不久,他就能把杜甫、李白的诗背诵如流。这学年结束,他考得第一。以后求学,每次考试都是第一名。

  13岁那年春天,小学毕业,距离暑假考中学有半年的时间,就把《左传》从头到尾熟读。1914年,他以优秀成绩,考进了温州的浙江省第十中学。最初他立志读完《资治通鉴》,将来当一名历史学家。可是在初中二时学校新聘了一位从日本留学回来的杨老师,他觉得积弱的中国靠古老的历史和文学是救不了的,只能以科学才能救中国,因此这想法影响苏步青。

  “苏步青,我觉得你的历史和文学都学得挺好,可是我觉得你在学数学方面会有发展前途,今后应该多钻研数学,少看历史和诗词的书。”杨老师借给他看科学杂志,鼓励他学科学。

  于是苏步青的读书兴趣逐渐由文学转到理科,特别是对数学很有兴趣。他为了证明著名的欧几里得几何的一个定理:“任意三角形内角之和等于180°”,废寝忘食的找到二十个不同方法的证明,后来写成了一篇论文,送到浙江省的一个学生作业展览会上展览。

  中学的校长洪彦远毕业于东京高等师范学校,是中国最早去日本学习数学的二人之一。他兼教平面几何,听到杨老师讲他班上15岁的苏步青勤奋好学的事,对他关注起来,常在同学自修时过来看苏步青的作业本,每看一道题,就露出一丝笑容,有时频频点头。洪校长对几何教得极好,非常欣赏苏步青的解法。有一天,洪校长把他叫到办公室,问了他一些学习及家庭情况之后,便觉得这孺子可教,而且可能是未来的国家栋梁,便对他说:“我要调离学校,到教育部去工作。你毕业后可以到日本去学习,我一定帮助你。”

  少年负笈赴东瀛

  对于洪校长的鼓励及器重,苏步青很是感激,这使他更勤奋的读书及钻研数学。当年中国教育是实施中学四年制,苏步青以第一名的优异成绩毕业。

  17岁时中学毕业了,他想起了洪校长的嘱咐,便写信给在教育部工作的洪彦远,表示想出国留学,可是却没有钱,想请他资助。过了不久,洪彦远就汇了200银元给他,并且勉励他为为国争光。苏步青捧着白花花的巨款,激动地滚下热泪,洪校长的钱是“及时雨”,这是改变他一生的转折点。

  1919年7月的一个秋天,苏步青乘日本海轮,从上海驶往日本。洪校长寄了临别赠言几句话:“天下兴亡,匹夫有责,要为中华富强而奋发读书。”后来他回忆往事写了《外滩夜归》的诗句:“渡头轻雨洒平沙,十里梧桐绿万家。犹记当时停泊处,少年负笈梦荣华。”

  他说1919年时中国是列强所任意宰割、任意瓜分的半封建半殖民地。英、美、法、日、意、德大小列强等国皆在中国有租借地,在上海的外滩公园就挂着“华人与狗不得入内”的牌子,在黄浦江上停泊的是英国、美国、日本等国家的军舰。而他到日本去每次都从黄浦江进出,每逢冬天都看见南京路上有冻死的人,他坐在日本的海轮上想:“我们自己还不会造船,有一天我们自己能造轮船就好了!”

  到日本后,他先去东京的东亚日语补习学校学习了一个月,后由熟人介绍住进一个日本家庭。他向房东大娘学日本文时,不仅早上和她一起去菜市场买菜,练习日语会话,并且晚上听她读报、讲故事,自己预习功课,准备投考东京高等工业学校。很快的他便掌握了初级的日本语言的能力了。

数学的名人故事7

  泰勒斯生于公元前624年,是古希腊第一位闻名世界的大数学家.他原是一位很精明的商人,靠卖橄榄油积累了相当财富后,泰勒斯便专心从事科学研究和旅行.他勤奋好学,同时又不迷信古人,勇于探索,勇于创造,积极思考问题.他的家乡离埃及不太远,所以他常去埃及旅行.在那里,泰勒斯认识了古埃及人在几千年间积累的丰富数学知识.他游历埃及时,曾用一种巧妙的方法算出了金字塔的高度,使古埃及国王阿美西斯钦羡不已.

  泰勒斯的方法既巧妙又简单:选一个天气晴朗的日子,在金字塔边竖立一根小木棍,然后观察木棍阴影的长度变化,等到阴影长度恰好等于木棍长度时,赶紧测量金字塔影的长度,因为在这一时刻,金字塔的'高度也恰好与塔影长度相等.也有人说,泰勒斯是利用棍影与塔影长度的比等于棍高与塔高的比算出金字塔高度的.如果是这样的话,就要用到三角形对应边成比例这个数学定理.泰勒斯自夸,说是他把这种方法教给了古埃及人但事实可能正好相反,应该是埃及人早就知道了类似的方法,但他们只满足于知道怎样去计算,却没有思考为什么这样算就能得到正确的答案.

  泰勒斯最先证明了如下的定理:

  1.圆被任一直径二等分.

  2.等腰三角形的两底角相等.

  3.两条直线相交,对顶角相等.

  4.半圆的内接三角形,一定是直角三角形.

  5.如果两个三角形有一条边以及这条边上的两个角对应相等,那么这两个三角形全等.

  这个定理也是塞乐斯最先发现并最先证明的,后人常称之为塞乐斯定理.相传泰勒斯证明这个定理后非常高兴,宰了一头公牛供奉神灵.后来,他还用这个定理算出了海上的船与陆地的距离.

数学的名人故事8

  笛卡儿是法国数学家,哲学家,物理学家,生理学家。1596年3月31日生于图伦省拉埃(今称拉埃―笛卡儿);1650年2月11日卒于瑞典斯德哥尔摩。

  1612年从法国最好的学校之一 ——拉费里舍的耶稣会学校毕业,同年去普瓦捷大学攻读法学,1616年获该校博士学位。取得学位之后,他就暗下决心:今后不再仅限于书本里求知识,更要向“世界这本大书”求教,以“获得经验”,而且要靠理性的探索来区别真理和谬误。

  主要贡献

  毕业后,他背离家庭的传统职业,开始探索人生之路。自1618年起,先在军队里当过几年兵,离开军队之后便到德国,丹麦,荷兰,瑞士,意大利等国游历,所见所闻丰富了他的见识,更重要的是对当时科学的最新成果增强了了解。1628年定居荷兰,在那里生活了 20年,写出了哲学,数学和自然科学一系列著作。他先后出版了《形而上学的沉思》和《哲学原理》两本名著,前者是关于物理学的主要基础,后者主要是阐述他在物理学和生物学方面的研究成果。

  他的哲学思想受到很多人的推崇,黑格尔(Hegel)称他是“现代哲学之父”。他是将哲学思想从传统的经院哲学束缚中解放出来的第一个人,是唯理论的创始人。

  笛卡儿对数学的最大贡献是创立了解几何学。他认为数学比其他科学更符合理性的要求。他是以下列身份的结合来研究数学的,作为哲学家、作为自然界的探索者、作为一个关心科学用途的人。他的基本思想事要建立起一种普通的数学,使算术,代数和几何统一起来。他曾说:“我决心放弃那些仅仅是抽象的'几何,这就是说,不再去考虑那些仅仅是用来练习思维的问题。我这样做,是为了研究另一种几何,即目的在于解释自然现象的几何。”为此他写了《几何学》。笛卡儿在《几何学》所阐发的思想,被弥尔(Mill)称作“精密科学进步中最伟大的一步”。

  笛卡儿的理论以两个观念为基础:坐标观念和利用坐标方法把带有两个未知数的任意代数方程看成平面上的一条曲线。他的《几何学》共分三个部分:第一部分包括对一些代数式作几何的原则解释,在这一部分中,笛卡儿把几何算术化了;第二部分讨论了曲线的分类法以及作曲线的切线的方法;第三部分涉及高于二次方程的解法,指出了,方程可能有和它的次数一样多的根,还提出了著名的笛卡儿符号法则。指出了多项式方程: 的正根的最多数目等于系数变化的次数,而负根的最多数目等于两个正号和两个负号连续出现的次数,但他没有给出证明。

  在他的《几何学》中第一次出现变量与函数的思想。笛卡儿所谓的变量,是指具有变化长度而不变方向的线段,还指连续经过坐标轴上所有点的数字变量,正是变量的这两种形式使笛卡儿试图创造一种几何与代数互相渗透的科学。笛卡儿的功绩是把数学中两个研究对象“形”与“数”统一起来,并在数学中引入“变量”,完成了数学史上一项划时代的变革。对此恩格斯给予了极高的评价:“数学中转折点是笛卡儿的变数,有了变数,运动进入了数学,有了变数,辩证法进入了数学,有了变数,微分和积分也就立刻成为必要的了。”

  应该指出,笛卡儿的坐标系是不完备的,他未曾引入第二条坐标轴,即y轴。另外笛卡儿也没有考虑横坐标的负值。

  笛卡儿对韦达所采用的符号作了改进,他用字母表中开头几个字母 等表示已知数,而用末尾几个字母 等表示未知数,这种表示法一直沿用至今。他还考虑过高次抛物线( ),并且给出了作摆线切线的相当精巧的方法。

  笛卡儿认为科学的本质是数学。他说“我尤其对数学推理的确实性与明了性感到高兴。“他强调科学的目的在于“造福人类”,使人成为自然界的“主人和统治者”。

  笛卡儿死于肺炎。在教会控制下的学术界,对笛卡儿的逝世十分冷淡,只有几个友人为他送葬。 随着笛卡儿的数学和哲学思想影响的扩大,法国政府在笛卡儿去世后18年,才将其骨灰运回安葬在巴黎名人公墓。在评论笛卡儿的骨灰回归他的故土法国时,德国数学家雅克比幽默地说:“占有伟人的骨灰,通常比他们活着的时候占有他们本人更方便。”1799年又将其骨灰置于历史博物馆,1819年移入圣日耳曼圣心堂中,其墓碑上刻着:笛卡儿,欧洲文艺复兴以来,第一个为争取并保证理性权利的人。

数学的名人故事9

  高斯念小学的时候,有一次在老师教完加法后,因为老师想要休息,所以便出了一道题目要同学们算算看,题目是:1+2+3+ 。 +97+98+99+100 =?老师心里正想,这下子小朋友一定要算到下课了吧!正要借口出去时,却被高斯叫住了!原来呀,高斯已经算出来了,小朋友你可知道他是如何算的吗?

  高斯告诉大家他是如何算出的:把1加至100与100加至1排成两排相加,也就是说:1+2+3+4+ 。 +96+97+98+99+100 100+99+98+97+96+ 。 +4+3+2+1 =101+101+101+ 。 +101+101+101+101共有一百个101相加,但算式重复了两次,所以把10100除以2便得到答案等于<5050>从此以后高斯小学的学习过程早已经超越了其它的`同学,也因此奠定了他以后的数学基础,更让他成为——数学天才!

数学的名人故事10

  尼尔斯·亨利克·阿贝尔(1802年8月5日-1829年4月6日),挪威数学家,在很多数学领域做出了开创性的工作。他最著名的一个结果是首次完整给出了高于四次的一般代数方程没有一般形式的代数解的证明。这个问题是他那时最著名的未解决问题之一,悬疑达250多年。他也是椭圆函数领域的开拓者,阿贝尔函数的发现者。尽管阿贝尔成就极高,却在生前没有得到认可,他的生活非常贫困,死时只有27岁。

  阿贝尔是十九世纪挪威出现的最伟大数学家。他的父亲是挪威克里斯蒂安桑主教区芬杜小村庄的牧师,全家生活在穷困之中。在1815年,当他进入了奥斯陆的一所天主教学校读书,他的数学才华便显露出来。经他的老师霍尔姆伯的引导下,他学习了不少当时的名数学家的著作,包括:牛顿、欧拉、拉格朗日及高斯等。

  1820年,阿贝尔的父亲去世,照顾全家七口的重担突然交到他的肩上。虽然如此,1821年阿贝尔透过霍姆彪的补助,仍可进入奥斯陆的克里斯蒂安尼亚大学,即奥斯陆大学就读,於1822年获大学预颁学位,并由霍姆彪的资助下继续学业。

  在学校里,他几乎全是自学,同时花大量时间作研究。1823年当阿贝尔的第一篇论文发表后,他的朋友便力请挪威政府资助他到德国及法国进修。

  这篇《一元五次方程没有代数一般解》论文,正确解决了这个几百年来的难题:即五次方程不存在代数解。后来数学上把这个结果称为阿贝尔-鲁芬尼定理。阿贝尔认为这结果很重要,便自掏腰包在当地的印刷馆印刷他的论文。因为贫穷,为了减少印刷费,他把结果紧缩成只有六页的小册子。

  阿贝尔满怀信心地把这小册子寄给外国的数学家,包括德国被称为数学王子的家高斯,希望能得到一些反应。可惜文章太简洁了,没有人能看懂。高斯收到这小册子时觉得不可能用这么短的篇幅证明这个世界著名的问题----连他还没法子解决的问题,于是连拿起刀来裁开书页来看内容也懒得做,就把它扔在书堆里了。高斯错过了这篇论文,不知道这个著名的代数难题已被解破。

  1826年夏天,他在巴黎造访了当时最顶尖的`数学家,并且完成了一份有关超越函数的研究报告。这些工作展示出一个代数函数理论,现称为阿贝尔定理,而这定理也是後期阿贝尔积分及阿贝尔函数的理论基础。他在巴黎被冷落对待,他曾经把他的研究报告寄去科学学院,望可得到好评,但他的努力也是徒然。他在离开巴黎前染顽疾,最初只以为只是感冒,后来才知道是肺结核病。

  在1828年冬天,阿贝尔的病逐渐严重起来。在他圣诞节去芬罗兰探他的未婚妻克莱利·肯姆普期间,病情便更恶化。到1829年1月时,他已知自己寿命不长,出血的症状已无法否认。直至1829年4月6日凌晨,阿贝尔去世了。

  直到阿贝尔去世前不久,人们才认识到他的价值。1828年,四名法国科学院院士上书给挪威国王,请他为阿贝尔提供合适的科学研究位置,勒让德也在科学院会议上对阿贝尔大加称赞。在阿贝尔死後两天,克列尔写信说为阿贝尔成功争取於柏林大学当数学教授,可惜已经太迟,一代天才数学家已经在收到这消息前去世了。

  此后荣誉和褒奖接踵而来,1830年他和卡尔·雅可比共同获得法国科学院大奖。阿贝尔在数学方面的成就是多方面的。除了五次方程之外,他还研究了更广的一类代数方程,后人发现这是具有交换的伽罗瓦群的方程。为了纪念他,后人称交换群为阿贝尔群。阿贝尔还研究过无穷级数,得到了一些判别准则以及关于幂级数求和的定理。这些工作使他成为分析学严格化的推动者。

  阿贝尔和雅可比是公认的椭圆函数论的奠基者。阿贝尔发现了椭圆函数的加法定理、双周期性、并引进了椭圆积分的反演。阿贝尔这一系列工作为椭圆函数论的研究开拓了道路,并深刻地影响着其他数学分支。埃尔米特曾说:阿贝尔留下的思想可供数学家们工作150年 。

  科学院秘书傅立叶读了论文的引言,然后委托勒让得和柯西负责审查。柯西把稿件带回家中,究竟放在什么地方,竟记不起来了。直到两年以后阿贝尔已经去世,失踪的论文原稿才重新找到,而论文的正式发表,则迁延了12年之久。

  这些迟来的荣誉对这位数学家已经没有任何意义了,这位数学天才在他短暂的一生中为数学的发展做出了巨大的贡献,虽然生活拮据,虽然怀才不遇,但是在困境中他依然坚持数学的研究。这种精神和阿贝尔的数学贡献同样珍贵。

数学的名人故事11

  读完《数学名人故事》这本书,我被书中丰富的内容所震撼。这些故事不仅展现了数学家们的个人才华和勤奋,也揭示了数学在人类历史中的重要地位。通过这些故事,我更加深入地理解了数学的本质和应用,同时也为数学家们的智慧和毅力所感动。

  这本书中的故事也让我思考了数学与生活的联系。数学不仅是一门学科,更是一种思维方式,一种解决问题的'方法。通过这些故事,我认识到生活中无处不在的数学,也更加深刻地理解了数学在社会中的重要作用。

  总之,这本书让我受益匪浅,不仅增长了知识,也让我更加热爱数学,欣赏数学家们的智慧和努力。我相信,这本书对于任何对数学有兴趣的人来说,都是一本值得一读的书。

数学的名人故事12

  1796年的一天,一个青年开始做导师留的数学题。

  前两道题完成顺利。只剩第三道题:要求只用尺规,画出一个正17边形。

  这位青年绞尽脑汁,但是毫无进展。困难激起了斗志。他终于完成了这道难题。

  导师看到学生的作业惊呆了。他激动地说:“你知道吗?你解开了遗留两千多年的数学难题!”

  原来,导师因为失误,把这道题目的纸条交给学生。

  每当回忆时,这位青年总是说:“如果有人告诉我,这是一道有两千多年历史的数学难题,我可能永远也没有信心将它解出来。”

  这位青年就是数学王子高斯。

  拓展:简介

  卡尔·弗里德里希·高斯(),生于不伦瑞克,卒于哥廷根,德国数学家、物理学家和天文学家,大地测量学家。近代数学奠基者之一,在历史上影响之大,可以和阿基米德、牛顿、欧拉并列,有“数学王子”之称。卡尔·弗里德里希·高斯(),生于不伦瑞克,卒于哥廷根,德国数学家、物理学家和天文学家,大地测量学家。近代数学奠基者之一,在历史上影响之大,可以和阿基米德、牛顿、欧拉并列,有“数学王子”之称。

  1792年,15岁的`高斯进入布伦瑞克(Braunschweig)学院。在那里,高斯开始对高等数学作研究。独立发现了二项式定理的一般形式、数论上的“二次互反律”、质数分布定理及算术几何平均。1795年高斯进入哥廷根大学。1796年,19岁的高斯得到了一个数学史上极重要的结果,就是《正十七边形尺规作图之理论与方法》。1855年2月23日清晨,高斯于睡梦中去逝。

数学的名人故事13

  德米特里?克里欧科夫是美国加州大学圣迭戈分校的数学高级研究员,不久前的一天上午,他驾车行驶到一个路口时,恰逢红灯亮起。正当他准备刹车时,不料鼻子突然发痒,接着便响亮地打了个喷嚏。他紧急刹车,车险些越过停车线。就在他为没有闯红灯而庆幸时,距他30米开外的一名执勤交警还是飞快地跑到他跟前,不由分说就开了一张400美元的罚款单。

  在加州大学圣迭戈分校,克里欧科夫可是以爱较真出了名的,对于从天而降的400美元罚款,他无论如何不能接受。于是亮出自己的撒手锏,连夜洋洋洒洒撰写了长达4页的辩护状,几天后气宇轩昂地走上法庭进行申诉,以证明自己的“清白”,要求法官无条件撤销对他的“错误罚款”。

  法庭上,克里欧科夫“义正词严”地指出:“给我开罚单的那名交警,是在停车标志30米之外看走了眼而错判我闯了红灯。而事实是,我根本就没有闯红灯。我认为,是3个巧合让那个警察误认为我闯了红灯。1.观察者目测的不是汽车沿道路行驶的直线速度,而是汽车行驶时相对警察所在那一点的角速度。这就像我们站在路边观察匀速前进的汽车一样,当车离你很远时,它看上去速度很慢;当它离你很近时,人们却误以为它开得飞快。2.汽车减速,随后又加速。3.短时间内,观察者的视线被外部对象阻碍。例如两辆汽车同时靠近停车线,其中一辆挡住了观察者的视线。而正是上述3个条件,才使那个交警因角度问题目测到的是角速度而非线速度,也就是说,站在垂直于汽车前行轨迹上一定距离的那个交警,才因此产生了‘汽车并未停下’的错觉。也正是那名警察对现实的'感知能力没有正确地反映现实,才导致了我被无辜地罚款,所以罚款必须予以无条件撤销。”

  同时,克里欧科夫还向法庭展示了大量的图形和方程式,作为自己无罪的有力论据。

  近3个小时的论证,主审法官被克里欧科夫滔滔不绝的长篇大论绕晕了,多次要求停下来,让他解释他那一大套理论,但克里欧科夫却坚持要陈述完自己的观点。最终,法官以克里欧科夫“有理有据的清晰陈述”为由,当庭撤销了对他的罚单。

  在赢取上诉后,克里欧科夫又将那篇为辩护写的论文发表在一家科技杂志上,不仅获得了强烈反响,而且还被该杂志评为特殊奖,奖金为400美元,与当时的错误罚款打了个平手。

  克里欧科夫谦虚地对媒体说:“我之所以能赢得这场官司,应该归功于那篇有理有据的论文。虽然如此,我还是希望大家能从论文中找出论据的不足,以便我能继续深入完善,使之成为公众今后维护自己正当权益的一种新方式。”

数学的名人故事14

  读完《数学名人故事》这本书,让我受益匪浅。这些故事不仅让我们了解了数学的发展历程,还让我们认识了许多杰出的数学家,感受到了他们坚韧不拔的精神。

  在这本书中,我最敬佩的是费马和柯西这两位数学家。费马通过研究发现了“费马大定理”,他的坚韧不拔和对数学的热爱让我深受启发。柯西则是一位数学分析的.先驱,他的贡献为数学分析的发展奠定了基础。他们的故事让我了解到,成功需要付出艰辛的努力,同时也需要坚定的信念和不屈不挠的精神。

  这本书也让我深刻认识到数学的重要性。数学不仅仅是一门学科,更是人类文明的重要组成部分。通过对数学史的了解,我认识到数学不仅是一种工具,更是一种文化。它的发展对人类文明产生了深远的影响,促进了科学的进步。

  此外,这本书也让我对数学产生了更浓厚的兴趣。这些数学家的故事让我对数学有了更深刻的理解,同时也让我对数学的应用产生了浓厚的兴趣。我相信,通过学习数学,我们可以更好地理解世界,更好地解决问题。

  总之,《数学名人故事》是一本非常值得一读的书籍。它不仅让我们了解了数学的发展历程,更让我们认识到数学的重要性。通过了解数学家的故事,我们能够更好地理解数学,同时也能够更好地应用数学。我相信,这本书将对我未来的学习和生活产生深远的影响。

数学的名人故事15

  贝叶斯提供了关于概率论与数理统计最重要的工具之一。这个工具让我们对概率的研究能够进行更加艰巨的探索。

  如果我们知道一个事件发生的内在机制,那么我们计算着事件的概率是非常简单的。用基本的计算,我们能算出打扑克梭哈时,得到同花顺的概率,或者扔硬币时,连续5次都是正面的概率,再或者彩票中奖的概率。

  但更多时候,我们更关心把上述问题反过来的情况。我们不去计算基于知道发生机制的事件的概率,而是基于观察到的现象,想得到和了解不知道发生机制的事件的发生的可能性。

  我们需要了解在一些情况下基于观测现象背后的关联性。比如医学(如果检测为阳性,患病的可能有多大?)、比如社会科学(基于历史数据,最好的解释通货膨胀与失业率之间关系的模型是什么?)、比如日常生活(如果女孩同意和我去另外一家酒吧,他对我有意思的可能性有多大?)。

  贝叶斯定理提供了一个形式化的'工具,让我们能回答这些问题。当一种事情已经发生的条件下,定理让我们能计算这样的概率,当特定事件发生时,鉴于观测结果,基于我们把观测结果纳入特定事件看是否发生,这样能同时得到先前事件在特定事件下发生的可能性。

  贝叶斯定理是一个分析信息缘由的强大工具,它还是整个统计学思想的底层框架。

【数学的名人故事】相关文章:

数学的名人故事05-18

数学名人的故事05-15

数学名人故事03-30

数学名人故事【优秀】05-27

数学名人高斯故事12-04

数学家的名人故事05-21

数学名人的故事【集合】06-09

数学家名人故事:刘徽01-14

(精选)数学名人故事15篇05-21

数学的名人故事15篇【精】05-18