数学名人故事【优秀】
数学名人故事1
高斯,著名数学家,1777年生,德国人,先后有155种数学专著出版,有“数学家之王”的称号。

高斯的父亲是泥瓦匠的工头,每星期六他总是要发薪水给工人。有一次,当他计算着给工人发薪水的时候,小高斯站了起来告诉爸爸错了。原来,3岁的小高斯趴在地板上,一直暗地里跟着父亲计算,父亲惊异地复核了一次,果然孩子说的是正确的。高斯后来回忆自己的童年时说,他在学会说话之前,已经学会计算了。
高斯上三年级时,有一次老师给学生们出了一道求1至100之和的算术题。不料,老师叙述完题目不过几秒钟,高斯就第一个把写有答案的小石板交了上去,老师起初并不注意这一举动,心想这个小家伙不知道写了些什么。但当他检查完全班学生的石板,发现唯一正确的答案是属于高斯时,才大吃一惊。而更令人吃惊的'是,高斯用了教师未曾教过的计算等差级数的办法。即将一头一尾挨次两个数相加,这样,和都是一样的:1加100是101;2加99是101;直到50加51和也是101;一共有50个101;用50乘101,最后得出了正确答案:5050。
高斯的才华使老师彪特耐尔十分激动,并感到内疚。原来,他不安心在乡村小学工作,看不起农民的孩子。这件事发生以后,他认真备课,努力教学。
高斯特别愿意和舅舅本茨在一起玩,舅舅也十分疼爱小高斯。他每次来到家中,总是给小高斯讲故事,做游戏,有时还带他出去捉蝴蝶、钓鱼、采蘑菇。
四月的一天,天气晴朗,风和日丽。小高斯跟着舅舅到野外玩耍,他骑在舅的肩上学骑术,手里拿一根小树枝,嘴里高声叫着:“嘎!嘎!”俨然是一位威武的骑兵将军。
突然,奔跑着的“马”停了下来。原来从河的上游漂来一根木头。舅舅为了开发小高斯的智力,便问:
“小高斯,你说木头为什么不沉到水下去呢?”
“木头轻呗!”小高斯不假思索地回答道。
舅舅又弯腰拾起一个石头投到河中,石头“扑通”一声就掉进河里去了。他又问:
“是那根大木头重,还是小石头重?”
“大木头比小石头重得多呀!”
比大木头轻的小石头为什么能沉到水下去,而比小石头重得多的大木头却浮在水面上,舅舅故意不给小外甥做解释,让小高斯自己去思考。于是,这个“为什么”长久地留在小高斯的脑海中,他一直在苦苦地思索着。
舅舅本茨是个有心人,他为了让小外甥更好地成长,他省吃俭用,买来不少好书送给小高斯。这一本本很有趣的书,使小高斯爱不释手。小高斯的智力得到了很好开发,他的数学奇才一发而不可收,最后成为数学大王。
边读边想:一个人的成长除了本身的爱好之外,与周围的环境是密不可分的。家长要善于引导和帮助孩子,调动孩子对知识的渴望。
数学名人故事2
欧拉(L.Euler,1707.4.15-1783.9.18)是瑞士数学家。生于瑞士的巴塞尔(Basel),卒于彼得堡(Petepbypt)。父亲保罗·欧拉是位牧师,喜欢数学,所以欧拉从小就受到这方面的熏陶。但父亲却执意让他攻读神学,以便将来接他的班。幸运的是,欧拉并没有走父亲为他安排的路。父亲曾在巴塞尔大学上过学,与当时著名数学家约翰·伯努利(Johann Bernoulli,1667.8.6-1748.1.1)及雅各布·伯努利(Jacob Bernoulli,1654.12.27-1705.8.16)有几分情谊。由于这种关系,欧拉结识了约翰的两个儿子:擅长数学的尼古拉(Nicolaus Bernoulli,1695-1726)及丹尼尔(Daniel Bernoulli,1700.2.9-1782.3.17)兄弟二人,(这二人后来都成为数学家)。他俩经常给小欧拉讲生动的数学故事和有趣的数学知识。这些都使欧拉受益匪浅。1720年,由约翰保举,才13岁的欧拉成了巴塞尔大学的学生,而且约翰精心培育着聪明伶俐的欧拉。当约翰发现课堂上的知识已满足不了欧拉的求知欲望时,就决定每周六下午单独给他辅导、答题和授课。约翰的心血没有白费,在他的严格训练下,欧拉终于成长起来。他17岁的时候,成为巴塞尔有史以来的第一个年轻的硕士,并成为约翰的助手。在约翰的指导下,欧拉从一开始就选择通过解决实际问题进行数学研究的道路。1726年,19岁的欧拉由于撰写了《论桅杆配置的船舶问题》而荣获巴黎科学院的资金。这标志着欧拉的羽毛已丰满,从此可以展翅飞翔。
欧拉的成长与他这段历史是分不开的。当然,欧拉的成才还有另一个重要的因素,就是他那惊人的记忆力!,他能背诵前一百个质数的前十次幂,能背诵罗马诗人维吉尔(Virgil)的史诗Aeneil,能背诵全部的数学公式。直至晚年,他还能复述年轻时的笔记的全部内容。高等数学的计算他可以用心算来完成。
尽管他的天赋很高,但如果没有约翰的教育,结果也很难想象。由于约翰·伯努利以其丰富的阅历和对数学发展状况的深刻的了解,能给欧拉以重要的指点,使欧拉一开始就学习那些虽然难学却十分必要的书,少走了不少弯路。这段历史对欧拉的影响极大,以至于欧拉成为大科学家之后仍不忘记育新人,这主要体现在编写教科书和直接培养有才化的数学工作者,其中包括后来成为大数学家的拉格朗日(J.L.Lagrange,1736.1.25-1813.4.10)。
欧拉本人虽不是教师,但他对教学的影响超过任何人。他身为世界上第一流的学者、教授,肩负着解决高深课题的重担,但却能无视"名流"的非议,热心于数学的普及工作。他编写的《无穷小分析引论》、《微分法》和《积分法》产生了深远的影响。有的学者认为,自从1784年以后,初等微积分和高等微积分教科书基本上都抄袭欧拉的书,或者抄袭那些抄袭欧拉的书。欧拉在这方面与其它数学家如高斯(C.F.Gauss,1777.4.30-1855.2.23)、牛顿(I.Newton,1643.1.4-1727.3.31)等都不同,他们所写的书一是数量少,二是艰涩难明,别人很难读懂。而欧拉的文字既轻松易懂,堪称这方面的典范。他从来不压缩字句,总是津津有味地把他那丰富的思想和广泛的兴趣写得有声有色。他用德、俄、英文发表过大量的通俗文章,还编写过大量中小学教科书。他编写的初等代数和算术的教科书考虑细致,叙述有条有理。他用许多新的思想的叙述方法,使得这些书既严密又易于理解。欧拉最先把对数定义为乘方的逆运算,并且最先发现了对数是无穷多值的。他证明了任一非零实数R有无穷多个对数。欧拉使三角学成为一门系统的科学,他首先用比值来给出三角函数的定义,而在他以前是一直以线段的长作为定义的。欧拉的定义使三角学跳出只研究三角表这个圈子。欧拉对整个三角学作了分析性的研究。在这以前,每个公式仅从图中推出,大部分以叙述表达。欧拉却从最初几个公式解析地推导出了全部三角公式,还获得了许多新的公式。欧拉用a 、b 、c 表示三角形的三条边,用A、B、C表示第个边所对的角,从而使叙述大大地简化。欧拉得到的著名的公式:
又把三角函数与指数函联结起来。
在普及教育和科研中,欧拉意识到符号的简化和规则化既有有助于学生的学习,又有助于数学的发展,所以欧拉创立了许多新的符号。如用sin 、cos 等表示三角函数,用 e 表示自然对数的底,用f(x) 表示函数,用 ∑表示求和,用 i表示虚数等。圆周率π虽然不是欧拉首创,但却是经过欧拉的倡导才得以广泛流行。而且,欧拉还把e 、π 、i 统一在一个令人叫绝的关系式 中。 欧拉在研究级数时引入欧拉常数C, 这是继π 、e 之后的又一个重要的数。
欧拉不但重视教育,而且重视人才。当时法国的拉格朗日只有19岁,而欧拉已48岁。拉格朗日与欧拉通信讨论"等周问题",欧拉也在研究这个问题。后来拉格朗日获得成果,欧拉就压下自己的论文,让拉格朗日首先发表,使他一举成名。
欧拉19岁大学毕业时,在瑞士没有找到合适的工作。1727年春,在巴塞尔他试图担任空缺的教研室主任职务,但没有成功。这时候,俄国的圣彼得堡科院刚建立不久,正在全国各地招聘科学家,广泛地搜罗人才。已经应聘在彼得堡工作的丹尔·伯努利深知欧拉的才能,因此,他竭力聘请欧拉去俄罗斯。在这种情况下,欧拉离开了自己的祖国。由于丹尼尔的推荐,1727年,欧拉应邀到圣彼得堡做丹尼尔的助手。在圣彼得堡科学院,他顺利地获得了高等数学副教授的.职位。1731年,又被委任领导理论物理和实验物理教研室的工作。1733年,年仅26岁的欧拉接替回瑞士的丹尼尔,成为数学教授及彼得堡科学院数学部的领导人。
在这期间,欧拉勤奋地工作,发表了大量优秀的数学论文,以及其它方面的论文、著作。
古典力学的基础是牛顿奠定的,而欧拉则是其主要建筑师。1736年,欧拉出版了《力学,或解析地叙述运动的理论》,在这里他最早明确地提出质点或粒子的概念,最早研究质点沿任意一曲线运动时的速度,并在有关速度与加速度问题上应用矢量的概念。
同时,他创立了分析力学、刚体力学,研究和发展了弹性理论、振动理论以及材料力学。并且他把振动理论应用到音乐的理论中去,1739年,出版了一部音乐理论的著作。1738年,法国科学院设立了回答热本质问题征文的奖金,欧拉的《论火》一文获奖。在这篇文章中,欧拉把热本质看成是分子的振动。
欧拉研究问题最鲜明的特点是:他把数学研究之手深入到自然与社会的深层。他不仅是位杰出的数学家,而且也是位理论联系实际的巨匠,应用数学大师。他喜欢搞特定的具体问题,而不象现代某些数学家那样,热衰于搞一般理论。
正因为欧拉所研究的问题都是与当时的生产实际、社会需要和军事需要等紧密相连,所以欧拉的创造才能才得到了充分发挥,取得了惊人的成就。欧拉在搞科学研究的同时,还把数学应用到实际之中,为俄国政府解决了很多科学难题,为社会作出了重要的贡献。如菲诺运河的改造方案,宫延排水设施的设计审定,为学校编写教材,帮助政府测绘地图;在度量衡委员会工作时,参加研究了各种衡器的准确度。另外,他还为科学院机关刊物写评论并长期主持委员会工作。他不但为科学院做大量工作,而且挤出时间在大学里讲课,作公开演讲,编写科普文章,为气象部门提供天文数据,协助建筑单位进行设计结构的力学分析。1735年,欧拉着手解决一个天文学难题──计算慧星的轨迹(这个问题需经几个著名的数学家几个月的努力才能完成)。由于欧拉使用了自己发明的新方法,只用了三天的时间。但三天持续不断的劳累也使欧拉积劳成疾,疾病使年仅28岁的欧拉右眼失明。这样的灾难并没有使欧拉屈服,他仍然醉心于科学事业,忘我地工作。但由于俄国的统治集团长期的权力之争,日益影响到了欧拉的工作,使欧拉很苦闷。事也凑巧,普鲁士国王腓特烈大帝(Frederick the Great,1740-1786在位)得知欧拉的处境后,便邀请欧拉去柏林。尽管欧拉十分热爱自己的第二故乡(在这里他普工作生活了14年),但为了科学事业,他还是在1741年暂时离开了圣彼得堡科学院,到柏林科学院任职,任数学物理所所长。1759年成为柏林科学院的领导人。在柏林工作期间,他并没有忘记俄罗斯,他通过书信来指导他在俄罗斯的学生,并把自己的科学著作寄到俄罗斯,对俄罗斯科学事业的发展起了很大作用。
他在柏林工作期间,将数学成功地应用于其它科学技术领域,写出了几百篇论文,他一生中许多重大的成果都是这期间得到的。如:有巨大影响的《无穷小分析引论》、《微分学原理》,既是这期间出版的。此外,他研究了天文学,并与达朗贝尔(I.L.R.D'Alembert,1717.11.16-1783.10.29)、拉格朗日一起成为天体力学的创立者,发表了《行星和慧星的运动理论》、《月球运动理论》、《日蚀的计算》等著作。在欧拉时代还不分什么纯粹数学和应用数学,对他来说,整个物理世界正是他数学方法的用武之地。他研究了流体的运动性质,建立了理想流体运动的基本微分方程,发表了《流体运动原理》和《流体运动的一般原理》等论文,成为流体力学的创始人。他不但把数学应用于自然科学,而且还把某一学科所得到的成果应用于另一学科。比如,他把自己所建立的理想流体运动的基本方程用于人体血液的流动,从而在生物学上添上了他的贡献,又以流体力学、潮汐理论为基础,丰富和发展了船舶设计制造及航海理论,出版了《航海科学》一书,并以一篇《论船舶的左右及前后摇晃》的论文,荣获巴黎科学院奖金。不仅如此,他还为普鲁士王国解决了大量社会实际问题。1760年到1762年间,欧拉应亲王的邀请为夏洛特公主函授哲学、物理学、宇宙学、神学、化理学、音乐等,这些通信充分体现了欧拉渊博的知识、极高的文学修养、哲学修养。后来这些通信整理成《致一位德国公主的信》,1768年分三卷出版,世界各国译本风靡,一时传为佳话。
自从1741年欧拉离开彼得堡以后,俄国的政局一直不好,政权几次更迭,最后落入叶卡捷林娜二世的手中,她吸取了以往的教训,开始致力于文治武功。她一面与伏尔泰、狄德罗等法国启蒙学者通信,一面又四方招聘有影响的科学家去彼得堡科学院任职。欧拉自然成了她主要聘请的对象。1766年,年已花甲的欧拉应邀回到彼得堡,这次俄国为他准备了优越的工作条件。
这时欧拉的科学研究工作已经是硕果累累,思想也已经成熟。除了一些专题还需继续研究外,他希望能在晚年对过去的成就作系统的总结,出版几部高质量的著作。然而,厄运再次向他袭来。由于俄罗斯气候严寒,以及他工作的劳累,欧拉的左眼又失明了,从此欧拉陷入伸手不见五指的黑暗之中。但欧拉是坚强的,他用口授、别人记录的方法坚持写作。他先集中精力撰写了《微积分原理》一书,在这部三卷本巨著中,欧拉系统地阐述了微积分发明以来的所有积分学的成就,其中充满了欧拉精辟的见解。1768年,《积分学原理》第一卷在圣彼得堡出版。1770年第三卷出版。同年,他又口述写成《代数学完整引论》,有俄文、德文、法文版,成为欧洲几代人的教科书,正当欧拉在黑暗中搏斗时,厄运又一次向他袭来。1771年,圣彼得堡一场大火,秧及欧拉的住宅,把欧拉包围在大火中。在这危急的时刻,是一位仆人冒着生命危险把欧拉从大火中背出来。欧拉虽然幸免于难,可他的藏书及大量的研究成果都化为灰烬。种种磨难,并没有把欧拉搞垮。大火以后他立即投入到新的创作之中。资料被焚,他又双目失明,在这种情况下,他完全凭着坚强的意志和惊人的毅力,回忆所作过的研究。欧拉的记忆力也确实罕见,他能够完整地背诵出几十年前的笔记内容,数学公式当然更能背诵如流。欧拉总是把推理过程想得很细,然后口授,由他的长子记录。他用这种方法又发表了论文400多篇以及多部专著,这几乎占他全部著作的半数以上。1774年,他把自己多年来研究变分问题所取得的成果集中发表一本书《寻求具有某种极大或极小性质的曲线的技巧》中。从而创立了一个新的分支──变分法。另外,欧拉对天文学中的"三体问题"月球运动及摄运问题进行了研究。后来,他解决了牛顿没有解决的月球运动问题,首创了月球绕地球运动地精确理论。为了更好地进行天文观测,他曾研究了光学,天文望远镜和显微镜。研究了光通过各种介质的现象和有关的分色效应,提出了复杂的物镜原理,发表过有关光学仪器的专著,对望远镜和显微镜的设计计算理论做出过开创性的贡献,在1771年他又发表了总结性著作《屈光学》。欧拉从19岁开始写作,直到逝世,留下了浩如烟海的论文、著作,甚至在他死后,他留下的许多手稿还丰富了后47年的圣彼得堡科学院学报。就科研成果方面来说,欧拉是数学史上或者说是自然科学史上首屈一指的。
作为这样一位科学巨人,在生活中他并不是一个呆板的人。他性情温和,性格开朗,也喜欢交际。欧拉结过两次婚,有13个孩子。他热爱家庭的生活,常常和孩子们一起做科学游戏,讲故事。
欧拉旺盛的精力和钻研精神一直坚持到生命的最后一刻。1783年9月18日下午,欧拉一边和小孙女逗着玩,一边思考着计算天王星的轨迹,突然,他从椅子上滑下来,嘴里轻声说:"我死了"。一位科学巨匠就这样停止了生命。
历史上,能跟欧拉相比的人的确不多,也有的历史学家把欧拉和阿基米德、牛顿、高斯列为有史以来贡献最大的四位数学家,依据是他们都有一个共同点,就是在创建纯粹理论的同时,还应用这些数学工具去解决大量天文、物理和力学等方面的实际问题,他们的工作是跨学科的,他们不断地从实践中吸取丰富的营养,但又不满足于具体问题的解决,而是把宇宙看作是一个有机的整体,力图揭示它的奥秘和内在规律。
由于欧拉出色的工作,后世的著名数学家都极度推崇欧拉。大数学家拉普拉斯(P.S.M.de Laplace,1749.3.23-1827.3.5)普说过:"读读欧拉,这是我们一切人的老师。"被誉为数学王子地高斯也普说过:"对于欧拉工作的研究,将仍旧是对于数学的不同范围的最好的学校,并且没有别的可以替代它"。
数学名人故事3
他是十九世纪最伟大的代数几何学家,但是他大学入学考试重考了五次,每次失败的原因都是数学考不好。他的大学读到几乎毕不了业,每次考不好都是为了数学那一科。他大学毕业后考不上任何研究所,因为考不好的科目还是── 数学。数学是他一生的至爱,但是数学考试是他一生的恶梦。不过这无法改变他的伟大:课本上"共轭矩阵"是他先提出来的,人类一千多年来解不出"五次方程式的通解",是他先解出来的。自然对数的"超越数性质",全世界,他是第一个证明出来的人。他的一生证明"一个不会考试的人,仍然能有胜出的人?quot;,并且更奇妙的是不会考试成为他一生的祝福。怎么会这样呢?嗯……也许能在本文中找到答案喔!翻开欧洲的地图,在法国的东北角嵌着一块小小的版图,名叫洛林Lorraine)。
这个地方自古以来就是兵家必争之地,因为北扼莱茵河口,南由马恩河(Marne River)可以直捣巴黎;濒临的阿登高地(Ardennes)是军事制高点;地层中蕴藏欧洲最大的铁矿。早在神圣罗马帝国时代,洛林草场上就染满骑士的鲜血;1871年德国的铁血雄兵蹂躏法国后,要求法国割让的土地就是洛林。
革命家的血统 经过百年来战争的洗礼,洛林留下来的是一批苦干、达观的法国人,足能面 对环境的苦难。埃尔米特(Charles Hermite)1822年12月24日出生在洛林的小村 庄Dieuge,他的父祖辈都参与了法国大革命,祖父被大革命后的极端政治团 体巴黎公社(Commune)逮捕,后来死于狱中;有些亲人死在断头台上;他的父亲是杰出的冶矿工程师,因为被公社通缉,逃到法国边界的洛林小村庄,在一家铁矿场中隐姓埋名做矿工。
铁矿场的主人叫雷利曼(Lallemand),一个标准强悍的洛林人,有一个比他更强悍的女儿玛德琳(Madeleine)。在那个保守的时代,玛德琳就以"敢在户外 穿长裤不穿裙子"而著名,凶悍地管理矿工。但是一遇到这位巴黎来的工程师,她就软化了,明知对方是死刑通缉犯还是嫁给他,而且为他生了七个孩子。埃尔米特在七个孩子中排名第五,生下来右脚就残障,需扶拐杖行走。他身上一半流着父亲优秀聪明、理想奋斗的血液,一半流着母亲敢作敢为、敢爱敢恨的洛林强悍血统,谱成不凡生涯的第一个升记号。
从大师认识数学之美
埃尔米特从小就是个问题学生,上课时老爱找老师辩论,尤其是一些基本的问题。他尤其痛恨考试;后来写道:"学问像大海,考试像鱼钩,老师老要把鱼挂 在鱼钩上,教鱼怎么能在大海中学会自由、平衡的游泳?" 老师看他考不好,就用木条打他的脚,他恨死了;后来写道?quot;达到教育的 目的是用头脑,又不是用脚,打脚有什么用?打脚可以使人头脑更聪明吗?" 他的数学考得特别差,主要原因是他的数学特别好;他讲的话更让数学老师 抓狂,他说:"数学课本是一滩臭水,是一堆垃圾。数学成绩好的人,都是 一些二流头脑的人,因为他们只懂搬垃圾。"他自命为一流的科学狂人。不 过他讲的也没错,历史上最伟大的数学家大多是文学、外交、工程、军事等, 与数学不相干科系出身的。 埃尔米特花许多时间去看数学大师,如牛顿、高斯的原著,他认为在那里才 能找到"数学的美,是回到基本点的辩论,那里才能饮到数学兴奋的源头。" 他在年老时,回顾少年时的轻狂,写道:"传统的数学教育,要学生按部就 班地,一步一步地学习,训练学生把数学应用到工程或商业上,因此,不重 启发学生的开创性。但是数学有它本身抽象逻辑的美,例如在解决多次方方 程序里,根的存在本身就是一种美感。数学存在的价值,不只是为了生活上 的应用,也不应沦为供工程、商业应用的工具。数学的突破仍需要不断地去突破现有格局。
孝顺的天才
埃尔米特的表现让父母忧心,父母但求他能把书念好,再多的钱也愿意付出,就把他送到巴黎的「路易大帝中学」(Louis-le-Grand)。因着超卓的数学天份, 他无法把自己塞入数学教育的窠臼,但是为了顺父母的意,又必须每天面对 那些细微繁琐的计算,以致痛苦得不得了。这位孝顺的天才,似乎注定终生 的自我折磨。 巴黎综合工科技术学院(Polytechnique)入学考每年举行两次,他从十八岁开始 参加,考到第五次才以吊车尾的成绩通过。其间他几乎要放弃时,遇到一位 数学老师李察(Richard)。李察老师对埃尔米特说:"我相信你是自拉格朗日 (Lagrange)以来的第二位数学天才。"拉格朗日被称为数学界的贝多芬,他所作的求根近似解被誉为「数学之诗」。 但是埃尔米特光有天份不够,李察老师说:"你需要有上帝的恩典,与完成 学业的坚持,才不会被你认为垃圾的传统教育牺牲掉。"因此他一次又一次 地落榜,却仍继续坚持应试。
骑在蜗牛背上的人 埃尔米特进技术学院念了一年以后,法国教育当局忽然下一道命令:肢障者不得进入工科学系,埃尔米特只好转到文学系。文学系里的数学已经容易很多了,结果他的数学还是不及格。有趣的是,他同时在法国的数学研究期刊《纯数学与应用数学杂志》发表《五次方方程式 解的思索》,震惊了数学界。
在人类历史上,第三世纪的希腊数学家就发现一次方程与二次方程的解法,之后,多少一流数学家埋首苦思四次方程以上到n次方的解法,始终不得其解。没想到三百年后,一个文学系的.学生,一个数学常考不及格的学生,竟 然提出正确的解法。埃尔米特知道自己已经「对数学的开创性研究中毒很深,热爱得无法自拔」,幸得好朋友勃特伦(Bertrand)赶忙帮他补习学校要考的数学。对这一个具有开 创性的天才,僵化的数学教育带来无边的苦难;惟有友谊的了解与鼓励能够 支持他走下去,并使他在二十四岁时,能以及格边缘的成绩自大学毕业。 由于不会应付考试,无法继续升学,他只好找所学校做个批改学生作业的助 教。这份助教工作,做了几乎二十五年,仅管他这二十五年中发表了代数连 分数理论、函数论、方程论……已经名满天下,数学程度远超过当时所有大 学的教授,但是不会考试,没有高等学位的埃尔米特,只能继续批改学生作 业。社会现实对他就是这么残忍、愚昧。
不考试的老师 能够使埃尔米特不愤世嫉俗、坦然前行的动力是什么? 有三个重要的因素,一是妻子的了解与同心。埃尔米特的妻子,是他大学好 友勃特伦的妹妹,她无怨无悔地跟随这个不会考试的天才丈夫,一年一年地走下去。二是有人真正地赞赏他,不因他外表的残废与没有耀人的学位而轻视他。欣 赏他的人后来也都在数学界享有盛名──包括研究无穷级数收敛、发散与微 分方程式而著名的柯西(Cauchy),发表椭圆函数、行列式理论而著名的雅科 比(Jacobi),「纯数学与应用数学杂志」的主编刘维尔(Liouville)。这些都是行 家,而来自真正行家的惺惺相惜,比考试高分的一点虚伪荣耀,更能支助一 个失败者走较远的路。三是埃尔米特的信仰。埃尔米特在四十三岁时染患一场大病,柯西来看他, 并且把福音传给他。信仰给他另一种价值与满足。 埃尔米特在四十九岁时,巴黎大学才请他去担任教授。此后的二十五年,几乎整个法国的大数学家都出自他的门下。我们无从得知他 在课堂上的授课方式,但是有一件事情是可以确定的──没有考试。
三角几何里认识另一个世界 不会考试给他带来许多麻烦:工作不顺利、多次重考、他人的轻视、自卑… …。但是给他带来许多祝福:认识妻子、好友、信仰,与整个生命的成熟。 后来美国加州理工学院数学系的教授贝尔(Bell),在他对历史上数学伟人的 回顾上,用一段话描述埃尔米特: 在历史上的数学家愈是天才,愈是好讥诮,讲话愈多嘲讽。只有一个人 例外,就是埃尔米特,他有真正完美的人格。埃尔米特死于1901年1月4日。晚年写道: "三角几何是永恒、是不朽的。自然界里没有任何一个东西是绝对的三角形, 但是在人的脑中却存在着完美、绝对的三角形,去衡量外面的形形状状。 没有人知道为什么三角的总和就是180°,没有人知道为什么三角的最长斜 边对应最大角。这些三角几何的基本特性,不是人去发明出来或想象出来的, 而是人在懵懂无知的时候,这些三角特性就存在,并且无论时空如何改变, 这些特性也不会改变。我只不过是一个无意中发现这些特性的人。 三角几何的存在,证明有一永久不改变的世界存在。
数学名人故事4
读完《数学名人的故事》,我被书中收录的数学家们的生平事迹深深打动。这本书通过描绘一些历史上著名的数学家,让我们对数学的发展历程有了更深入的了解。同时,这些故事也赋予了数学一种人文关怀,让我们更加欣赏和尊重这门科学。
书中,我特别被欧拉和康托尔的故事吸引。欧拉在面临逆境时,以坚韧不拔的精神战胜了重重困难,他的故事让我对毅力有了更深的理解。而康托尔对无限追求的痴迷和执着,让我对数学的深度有了更深的认识。
这些故事也让我对数学有了新的认识。它们让我了解到,数学不仅仅是公式和定理,更是一种智慧和精神的体现。这些数学家的追求和贡献,使我更加尊重和欣赏数学。
总的来说,我认为这本书是一本关于数学的.好书,它向我们展示了数学的发展历程,并赋予了数学一种人文关怀。它不仅提高了我们对数学的认知,也让我们对这些数学家产生了深深的敬意。同时,它也让我更加理解数学,对数学的追求有了更深的理解和欣赏。
数学名人故事5
十九世纪初,一个早晨,英国一家酿酒厂的老板带着他的两个儿子,来到著名科学家道尔顿的家里,恳求道尔顿教这两个孩子学习科学知识。那个年龄较小、机智活泼的孩子,名叫詹姆斯·焦耳。
道尔顿是位严格的老师。开始,他并没有给孩子们讲授物理和化学的原理,而是讲了许多高深的数学知识。
“讲这些枯燥的数学有什么用?若能讲讲那些有趣的电学实验该多好!”焦耳有些不耐烦了。
好不容易盼到了放假,焦耳和哥哥一同去旅游。他找来一匹跛马,让哥哥牵着,自己却悄悄躲在后面,用伏打电池将电流通到马身上,想要试验动物对电流的`反应。结果,跛马受到电击狂跳起来,差一点出了事。
他们又划船来到青山环绕的湖上。焦耳决定试试这里的回声有多大。他在枪口里塞入大量的火药,然后扣动扳机。谁知枪声大作,“”地一声,喷出一股长长的火焰,烧光了焦耳的眉毛,还把哥哥吓得差点落进水里。
后来,他们又兴致勃勃地爬上一座高山。只见远处浓云低垂,隐约能看到闪电,然后才听到滚滚的雷声。这是怎么回事?焦耳用怀表认真记录下从闪电开始到听到雷声的时间。
开学后,焦耳把自己做的试验都告诉了老师。道尔顿笑了,说:“这些实验中,只有最后一次你做对了。”他谆谆告诫焦耳:人们只要掌握了光的速度和声的速度,就可以从看到闪电到听到雷声的时间,推断出闪电发生在相距多远的地方。
焦耳听了很惊异:“难道枯燥的数学中会藏着这么多学问?”道尔顿举了许多例子开导他,真正的科学实验是不能只观察现象的,它必须有精密的测量,并学会用数学知识从测量的数据中总结出规律。
焦耳顿开茅塞,从此,他开始注重理论学习和精密的测量了。经过这样不懈地努力,他终于成为世界闻名的物理学家。
数学名人故事6
刘徽(生于公元250年左右),是中国数学史上一个非常伟大的数学家,在世界数学史上,也占有杰出的地位。他的杰作《九章算术注》和《海岛算经》,是我国最宝贵的数学遗产。
《九章算术》约成书于东汉之初,共有246个问题的解法。在许多方面:如解联立方程,分数四则运算,正负数运算,几何图形的体积面积计算等,都属于世界先进之列,但因解法比较原始,缺乏必要的证明,而刘徽则对此均作了补充证明。在这些证明中,显示了他在多方面的创造性的贡献。他是世界上最早提出十进小数概念的人,并用十进小数来表示无理数的立方根。在代数方面,他正确地提出了正负数的概念及其加减运算的法则;改进了线性方程组的解法。在几何方面,提出了"割圆术",即将圆周用内接或外切正多边形穷竭的一种求圆面积和圆周长的方法。他利用割圆术科学地求出了圆周率π=3。14的结果。刘徽在割圆术中提出的`"割之弥细,所失弥少,割之又割以至于不可割,则与圆合体而无所失矣",这可视为中国古代极限观念的佳作。
《海岛算经》一书中,刘徽精心选编了九个测量问题,这些题目的创造性、复杂性和富有代表性,都在当时为西方所瞩目。
刘徽思想敏捷,方法灵活,既提倡推理又主张直观。他是我国最早明确主张用逻辑推理的方式来论证数学命题的人。
刘徽的一生是为数学刻苦探求的一生。他虽然地位低下,但人格高尚。他不是沽名钓誉的庸人,而是学而不厌的伟人,他给我们中华民族留下了宝贵的财富。
数学名人故事7
1982年,18岁的马云迎来了生命里的第一次高考。不过马云并没因数学不好而退缩,反而做出了一个令人惊讶的举动,因为在他的报考志愿表上赫然写着:北京大学。
当那年的高考成绩出来以后,马云也算创造了个小奇迹,他的数学成绩是1分。
心灰意冷的马云和他一个表弟一起去宾馆应聘服务生,结果因为长得有点儿歪瓜裂枣的意思,愣是让老板给拒绝了。没办法,他通过找关系,才做了一份给出版社送书的活儿。也许一辈子也就这样了。
但是这时候路遥的《人生》改变了马云的想法,马云开始了艰苦的复读,并在19岁那年,再次走进了高考的考场。不过他的数学成绩嘛……高考成绩出来以后,马云的数学成绩实现了同比1800%的迅猛增长——19分!
接着,马云又开始了一边打工一边复习的日子。就这样,到了马云20岁那年,他毅然参加了第三次高考。在马云高考的'前一天,有一位姓余的老师对马云说,就你这个数学成绩,能考及格了我就把姓儿倒过来写。无论这老师是什么心态,马云是被刺激得够呛,他想出了一个绝招。
在考数学之前,马云背下了10个基本数学公式,考试开始以后就一个一个往公式里套。用这种独门绝技,马云这次数学的考试成绩还真就及格了——79分。
虽然马云这回数学成绩大幅提高,不过他总分数比本科线还是差5分。唉,也行啊,马云心想,有所大学上就不错了,管他是本科还是专科,也算圆了自己的一份坚持。就当马云准备进杭州师范的时候,又发生了一件事。
当年杭州师范英语系由于刚升到本科,以至于报考的学生竟然不够招生数。于是校领导做了一个令马云感觉是天上掉馅饼的决定,那就是让几个英语成绩好的专科生直升本科。于是,英语成绩很牛的马云光荣地以本科生的身份踏进了杭州师范。
数学名人故事8
我的语文特别好,好到什么陧度?我们高考的时候老师说是35分钟以后才能交卷,也就是说际会不会也得熬到35分钟。那么我35分钟的时候作文都弄完了,听有的题都答完了。等到35分钟,老师说现在如果哪个同学要交卷可以交卷了,我马上站起来交卷,因为我要争这个第一证明自己语文特别好。实际上分数下来也没考多少分,就是交卷交得快。
但是我的数学特别差,当时高考的时候,所有的同学都交卷走了,我还在那儿埋头研究数学,数学要是考五年多好,我一边学一边参加考试,因为打开卷子一道题都不会。
我至于笨到这个程度吗?原因非常简单。就是我上小学的时候碰到一个语文老师和一个数学老师,语文老师没事就夸我。
我写的作文其实也是有套路的,就说学校运动会,我就说枪声一响运动员像离弦的箭一样,大家都这么写,然后老师就在底下用红笔画一下,打一个感叹号写着“精彩”。然后我觉得我和鲁迅差不了多少,年龄比他小,文笔差不多。
又写了两年,老师放学后把我留下来,说明天上作文课,作文题叫“我的爸爸”,或者是“我的一天”,你先写一篇,然后明天上课我给同学当范文。我就回家什么事都不干,饭也不想吃,觉也不想睡,我在那里写这个作文,绞尽脑汁地写。
写完了第二天一上课赶紧交给老师,老师就拿着说,今天咱们作文的题目是“美好的一天”,现在我先给大家念一篇范文,这个范文是崔永元写的。然后他就声情并茂念一遍,我就不用写了,同学们就照着我的样子写。我就越来越有信心,越来越觉得确实和鲁迅差异不大,起码学起来很高兴。
数学是这样的',大概三年级的时候我们班调来一个女生,这也不怪我,因为她太漂亮,坐在我的斜对面。上课的时候我就经常看她,老师在黑板上讲什么都没听进去。
有一次我正在看她,老师就叫我名字,“崔永元,你来答一下这道题。”你说我那个时候是多纯情,没有听到,结果我们老师就拿一个粉笔头直接打在我脸上,全班同学都哄笑,我莫名其妙。老师让我站起来,“我刚才问你什么了?”
“我不知道。”
然后老师说:“你把这道题答一下。”我早就忘了,好像你上下五千年早就想到的事,就是答不出来了。就从那天开始,不要说上数学课,我只要见到数字就含糊,数学就再没有希望了。
数学名人故事9
张衡是我国汉朝时期一位非常出名的大文豪,与司马相如、杨雄和班固并称汉赋四大家。张衡的《二京赋》、《思玄赋》和《归田赋》等都是流传千年的文学佳品,至今仍被无数的文人墨客把玩赏析。
有的人觉得,文科和理科往往难以并重,那么张衡可能会打破这些人的`固有印象。张衡不仅在文学上展现了非凡的成就,天文学、地理学和数学上,张衡也取得了丰硕的成果,成为一代数学家。
张衡自小兴趣广泛,自学《五经》,贯通六艺,而且喜欢研究算学、天文、地理和机械制造等。在青年时期,他的志趣大半在诗歌、辞赋、散文上,他才高于世,却没有骄傲之情。
《后汉书》提到,张衡曾写过一部《算罔论》,可惜这本书在唐代失传了。我们从《九章算术·少广》章第二十四题的刘徽注文中得知有所谓“张衡算”。
从刘徽的这篇注文中知道,张衡给立方体定名为质,给球体定名为浑。张衡研究过球的外切立方体积和内接立方体积,研究过球的体积,其中还确定了圆周率值为10的开方,虽然这个值比较粗略,但却是中国第一个理论求得π的值。
数学名人故事10
《数学名人故事》是一本介绍历史上杰出数学家的精彩传记。阅读这本书,让我对这些数学家的工作产生了更深刻的理解,也让我对他们的研究方法和思维方式感到钦佩。
这些数学家的故事也让我意识到,成功需要坚持不懈的努力和面对困难时的勇气。他们经常需要面对困难和挑战,但他们仍然不断探索和尝试,最终取得了成功。
总的`来说,《数学名人故事》是一本非常有价值的书,让我了解了很多有关数学的历史和这些杰出数学家的故事。同时,它也让我学到了很多有关如何成功和如何面对挑战的宝贵经验。
数学名人故事11
读完《数学名人故事》后,我被其中的内容深深吸引,不仅因为其丰富的知识,也因为它对人类文化、历史和科学的深度探索。
首先,我被这本书的编排方式所吸引。它以历史为背景,讲述了从古至今的数学名人故事,让我们对数学的发展历程有了更深入的理解。此外,每个故事都有详细的背景介绍,让我们更好地理解数学家们的生平和思想。
其中,我最钦佩的是欧拉和费马这两位数学家。欧拉作为一位数学家和工程师,他的贡献不仅在于理论,更在于实践。他发明了各种数学工具,为后来的数学家提供了巨大的帮助。而费马则以他的定理和证明闻名,他的思考方式让人惊叹。
这本书让我更深入地理解了数学的本质。数学不仅仅是公式和定理,更是一种逻辑和思考方式。它帮助我们理解世界,并为我们提供了解决问题的工具。
读完这本书后,我意识到数学在我们的生活中的重要性。无论是计算机科学、物理学还是工程学,都离不开数学的.支持。同时,我也对数学家们的毅力和才华有了更深的理解。
总的来说,我觉得《数学名人故事》是一本很好的书,它不仅提供了丰富的知识,也让我们对数学有了更深的理解。我建议所有对数学有兴趣的人,都应该读这本书。
数学名人故事12
《数学名人故事》是一本介绍历史上杰出数学家的传记,这些数学家包括欧几里得、阿基米德、牛顿、高斯等等。通过阅读这本书,我了解到了这些数学家在数学领域中所做出的杰出贡献,以及他们不屈不挠、勇于探索的精神。
其中,我最喜欢的人物是高斯。高斯是历史上最伟大的数学家之一,他在数学领域做出了许多杰出的贡献,如高斯整环等。通过阅读高斯的`故事,我感受到了他在数学研究中坚持不懈、不怕困难的精神,这种精神非常值得我们学习。
总的来说,《数学名人故事》是一本非常好的书籍,可以让我们了解数学的发展历史,学习到数学家的精神,以及认识到数学的重要性和广泛应用。
数学名人故事13
1.古希腊学者阿基米德死于进攻西西里岛的罗马敌兵之手(死前他还在主:“不要弄坏我的圆”。)后,人们为纪念他便在其墓碑上刻上球内切于圆柱的图形,以纪念他发现球的体积和表面积均为其外切圆柱体积和表面积的三分之二。
2.伽罗华生于离巴黎不远的一个小城镇,父亲是学校校长,还当过多年市长。家庭的影响使伽罗华一向勇往直前,无所畏惧。1823年,12岁的伽罗华离开双亲到巴黎求学,他不满足呆板的课堂灌输,自己去找最难的数学原著研究,一些老师也给他很大帮助。老师们对他的评价是“只宜在数学的尖端领域里工作”。
3.阿基米德公元前287年出生在意大利半岛南端西西里岛的叙拉古。父亲是位数学家兼天文学家。阿基米德从小有良好的家庭教养,11岁就被送到当时希腊文化中心的亚历山大城去学习。在这座号称"智慧之都"的名城里,阿基米德博阅群书,汲取了许多的知识,并且做了欧几里得学生埃拉托塞和卡农的门生,钻研《几何原本》。
4.16世纪德国数学家鲁道夫,花了毕生精力,把圆周率算到小数后35位,后人称之为鲁道夫数,他死后别人便把这个数刻到他的墓碑上。瑞士数学家雅谷·伯努利,生前对螺线(被誉为生命之线)有研究,他死之后,墓碑上就刻着一条对数螺线,同时碑文上还写着:“我虽然改变了,但却和原来一样”。这是一句既刻划螺线性质又象征他对数学热爱的双关语
5.20世纪最杰出的数学家之一的冯·诺依曼.众所周知,1946年发明的电子计算机,大大促进了科学技术的`进步,大大促进了社会生活的进步.鉴于冯·诺依曼在发明电子计算机中所起到关键性作用,他被西方人誉为"计算机之父".1911年一1921年,冯·诺依曼在布达佩斯的卢瑟伦中学读书期间,就崭露头角而深受老师的器重.在费克特老师的个别指导下并合作发表了第一篇数学论文,此时冯·诺依曼还不到18岁.
6.祖冲之在数学上的杰出成就,是关于圆周率的计算.秦汉以前,人们以"径一周三"做为圆周率,这就是"古率".后来发现古率误差太大,圆周率应是"圆径一而周三有余",不过究竟余多少,意见不一.直到三国时期,刘徽提出了计算圆周率的科学方法--"割圆术",用圆内接正多边形的周长来逼近圆周长.刘徽计算到圆内接96边形,求得π=3.14,并指出,内接正多边形的边数越多,所求得的π值越精确.祖冲之在前人成就的基础上,经过刻苦钻研,反复演算,求出π在7.1415926与3.1415927之间.并得出了π分数形式的近似值,取为约率 ,取为密率,其中取六位小数是3.141929,它是分子分母在1000以内最接近π值的分数.祖冲之究竟用什么方法得出这一结果,现在无从考查.若设想他按刘徽的"割圆术"方法去求的话,就要计算到圆内接16,384边形,这需要化费多少时间和付出多么巨大的劳动啊!由此可见他在治学上的顽强毅力和聪敏才智是令人钦佩的祖冲之计算得出的密率,外国数学家获得同样结果,已是一千多年以后的事了.为了纪念祖冲之的杰出贡献,有些外国数学史家建议把π=叫做"祖率".
8.塞乐斯生于公元前624年,是古希腊第一位闻名世界的大数学家。他原是一位很精明的商人,靠卖橄榄油积累了相当财富后,塞乐斯便专心从事科学研究和旅行。他勤奋好学,同时又不迷信古人,勇于探索,勇于创造,积极思考问题。他的家乡离埃及不太远,所以他常去埃及旅行。在那里,塞乐斯认识了古埃及人在几千年间积累的丰富数学知识。他游历埃及时,曾用一种巧妙的方法算出了金字塔的高度,使古埃及国王阿美西斯钦羡不已。
9.高斯,德国著名数学家,并有“数学王子”的美誉。小时候高斯家里很穷,且他父亲不认为学问有何用,但高斯依旧喜欢看书,话说在小时候,冬天吃完饭后他父亲就会要他上床睡觉,以节省燃油,但当他上床睡觉时,他会将芜菁的内部挖空,里面塞入棉布卷,当成灯来使用,以继续读书,高斯有一个很出名的故事:用很短的时间计算出了小学老师布置的任务:对自然数从1到100的求和。他所使用的方法是:对50对构造成和101的数列求和(1+100,2+99,3+98……),同时得到结果:5050。这一年,高斯9岁。
10.天才由于积累,聪明在于勤奋。-----华罗庚
1930年的一天,清华大学数学系主任熊庆来,坐在办公室里看一本《科学》杂志。看着看着,不禁拍案叫绝:“这个华罗庚是哪国留学生?”“他是在哪个大学教书的?”最后还是一位江苏籍的教员慢吞吞地说:“我弟弟有个同乡叫华罗庚,他只念过初中。熊庆来惊奇不已,将华罗庚请到清华大学来。
从此,华罗庚就成为清华大学数学系助理员。第二年,他的论文开始在国外著名的数学杂志陆续发表。几年之后,华罗庚被保送到英国剑桥大学留学。他提出的理论被数学界命名为“华氏定理”。
数学名人故事14
《数学名人故事》是一本介绍历史上著名数学家的传记性读物。作者通过生动的叙述和丰富的插图,让读者了解了数学家们的生平和他们的工作成果,以及这些成果对现代社会的影响。
读完这本书,我深深地感受到了数学家们的不懈努力和他们对数学的热爱。他们面对着常人难以想象的困难和挑战,但他们始终坚持自己的信念,不断探索和发现。他们的成果不仅为现代科学和技术的发展奠定了基础,也为我们这些普通人提供了实用的`方法和技巧。
这本书也让我深刻认识到了数学的重要性。在现代社会,数学已经渗透到了各个领域,无论是计算机科学、物理学、化学还是医学等都需要数学的支持和帮助。因此,学习数学不仅仅是为了应对考试,更是为了更好地适应社会的发展。
总的来说,《数学名人故事》是一本很好的读物,它让我更加了解数学的发展历程和数学家的生平和成果,也让我更加深刻地认识到了数学的重要性。我相信,这本书会对我未来的学习和工作产生积极的影响。
数学名人故事15
在众多的数学名人中,让我深受感动的当属高斯。他的故事是一部关于毅力、创新和追求卓越的赞歌。
高斯以其名字命名了数学中的高斯定律,该定律描述了电荷均匀分布在一个闭合电路中产生的'电流。但是,他的成就远不止于此。高斯通过将他的生活分为两个部分,即理论研究和应用研究,展示了数学在现实世界中的广泛应用。
高斯的理论研究部分充满了挑战,他不断探索、实验,最终找到了解决问题的方法。这种精神是值得我们学习的,他告诉我们,只有勇于面对困难,才能实现伟大的成就。
在应用研究方面,高斯将数学应用于天文学、物理学、建筑工程等领域。他的工作表明,数学不仅是一种理论工具,而且是解决实际问题的重要工具。
高斯的故事还强调了团队合作的重要性。他与许多杰出的数学家和科学家合作,共同解决了许多问题。这种团队合作的精神也是我们今天在追求卓越时应该学习的。
总的来说,高斯的故事是一部关于毅力、创新和团队合作的精彩故事。通过他的故事,我们不仅可以了解数学的历史和发展,还可以学习到成功的关键因素。对于我来说,高斯的故事是一种激励,激励我不断探索、学习,追求更高的目标。
【数学名人故事】相关文章:
数学的名人故事07-06
(精选)数学的名人故事09-22
数学名人的故事06-25
数学名人故事06-26
数学家的名人故事08-21
数学名人的故事【集合】06-09
数学名人高斯故事04-11
数学的名人故事合集(15篇)06-23
数学家的名人故事简介07-06