圆的认识教案15篇【必备】
作为一名教职工,很有必要精心设计一份教案,借助教案可以有效提升自己的教学能力。我们应该怎么写教案呢?以下是小编整理的圆的认识教案,仅供参考,欢迎大家阅读。

圆的认识教案1
教学过程:
一、谈话交流,诱发学习兴趣。
1、同学们画过圆吗?介绍一下你是怎样画圆的?
2、我们知道圆规是画圆的工具,既然很多工具都能画圆,你觉得用圆规画圆有什么好处?
3、请你们练习了用圆规画圆,开始时会出现哪些问题?现在有什么画圆的窍门?
4、生活中很多物体的形状都是圆形,能说一说吗?为什么生活中这些物体的形状都是圆形呢?
除了美观之外,有些还利用了圆的特征。这节课我们就研究圆的认识,更多的了解圆。
二、通过操作,初步感受圆的特征。
1、老师手中的袋子里有各种形状的纸片,你能从中摸出圆形吗?(请学生操作)
2、有可能把其他这些图形当成圆吗?为什么?
(比较得出:圆是由曲线围成的平面图形)
三、经历游戏,主动学习半径特征。
1、圆还有哪些特征呢?让我们通过游戏来发现。
(1)课件演示画面:15个小朋友在玩套圈比赛,离杆心有近有远,小明离杆心最近。
动画:各人投了一个套圈,小明最后投,只有小明套中。小明高兴的神态说:“还是我投得准。”
教师提问:同学们,对小明的话,你们有什么想法?(引出这样比赛不公平,大家要站在距离杆心同样远的位置)
(2)课件演示画面:15人站成一排套圈。
教师提问:同学们,站成一排行吗?你有什么建议?(学生通常会建议围成圆形)
课件演示画面:15人围成圆形,但杆心不在圆心。
教师提问:这样行吗?要站成怎样的圆形才算公平?
2、师生合作画圆
教师提问:在操场上怎样才能画出这样的一个圆形来呢?
老师带来了这样的工具(一端拴有粉笔的绳),谁来和老师配合在黑板上画出一个圆?
(师生操作时老师有意改变绳长)这样行吗?为什么?
(强调要使所画的曲线和这个固定点的'距离处处相等,才能画出一个圆。)
师生合作画好一个圆。
3、教学圆心
画圆时,固定的一点叫做圆的圆心。用圆规画圆时针尖固定的一点就是圆心。圆心用字母o表示。杆心应该放在哪里呢?
4、教学半径
这15个人应该站在哪里?(圆上)
黑板上有一个圆,您能指出小明可以站在哪里?(将生所指的位置描出一个点)圆上有多少个这样的点呢?也就是说他可以站在圆上的任意一点。现在15人任意地站在圆上,你觉得公平吗?为什么?
你能表示出圆心到圆上任意一点的距离吗?(请学生在黑板上画一条半径)这样的线段能画多少条?
像这样连接圆心和圆上任意一点的线段叫做圆的半径。用字母r表示。
5、半径有哪些特征呢?
怎样证明所有的半径都相等呢?利用手中的圆片想想办法,在小组里商量一下。(方法一:量;方法二:对折;方法三:用圆规比划)可以看出,圆规两脚间的距离就是什么?圆的大小有什么决定?
四、通过操作,自主探究直径特征
1、刚才研究同一个圆中半径都相等时,很多同学想到了用折的方法,拿出纸片对折一次,发现什么?再对折几次呢?无论怎样对折都能完全重合,这也是圆的一个特征。
2、把折痕描出来,得到的线段就是圆的直径,用字母d表示。你能说一说直径是怎样的一条线段吗?
3、直径有哪些特征呢?和半径又有什么关系呢?利用手中的圆片量一量、折一折、比一比,将你的发现在小组里交流
4、汇报
(1)直径相交于圆心
(2)同一个圆中,直径有无数条,长度都相等
(3)同一个圆中,直径长度是半径的2倍,半径长度是直径的12。
用字母怎样表示呢?
三、联系实际,理解应用圆的特征。
1、利用圆的特征可以了解更多的信息。
(1)已知圆的半径(直径)求直径(半径)
2厘米8厘米
(2)在正方形中最大的圆
正方形的包装盒中放有一块圆形砚台,正方形包装盒边长18厘米。(图略)
(3)在长方形中最大的圆
长方形的茶杯包装盒中正好放2个茶杯,长方形包装盒的长是32厘米。(图略)
2、圆的特征在生活中得到广泛的应用。
车轮为什么做成圆形?车轴为什么要安放在圆心?
3、画图练习
(1)要在马路上的十字路口设计一个花圃,如果你是设计师,会把花圃设计成什么形状?为什么?
(2)在城市交通图上请你画出圆形花圃,半径2厘米。怎样画?
(3)在花圃中设置一个自动喷头,如果你是设计人员,喷头放在哪里?喷水距离应满足什么条件?为什么?
四、图形比较,总结圆的特征。
(每人发了一张椭圆纸片)这个图形(很接近圆的椭圆)是不是圆形?请从不同角度加以说明。
圆的认识教案2
——德江县稳坪镇中心完小:安世兵
一、教案背景:
1、面向学生:小学生
2、学科:小学数学
3、课时:1课时
二、教学课题:圆的认识
三、教学内容:义务教育课程标准六年级上册P55/56/57页
四、教材分析:
《圆的认识》是人教版小学数学六年级上册第四单元《圆》中的教学内容。本节课要求学生进一步认识圆、了解圆的特征、掌握用圆规画圆。渗透了曲线图形和直线图形的关系。通过对圆的认识,不仅能加深对周围事物的了解,提高解决实际问题的能力,也为今后学习圆的周长、面积、圆柱、圆锥等知识打好扎实的基础。
(一)、教学目标:
1、学生从圆中初步去感知,掌握圆的各部分名称及特征,
2、理解同圆或等圆中直径与半径的关系。
3、会使用工具正确规范画圆,培养学生的作图能力.
4、培养学生观察、分析、综合、概括及动手操作能力。
(二)、教学重难点:
教学重点:感知并了解圆的基本特征,认识圆的各部分名称。
突破方法:通过实践操作归纳总结圆的特征。
教学难点:理解直径与半径的关系,熟练掌握画圆的方法。
突破方法:在尝试的`基础上发现掌握圆的画法。
五、教学方法
1、利用多媒体创设情境,让学生感受数学来源于生活,服务于生活。
2、课堂上坚持以生为本,创造师生互动、生生互动、情感交融的课堂氛围。
3、培养学生观察、分析、综合、概括及动手操作能力。
六、教学准备
(1)学生准备好圆规、直尺、圆形纸片、一张白纸
(2)学生自带一个轮廓为圆的物体。
(3)教师准备好课件、与圆相关的其它教学资源。
七、教学过程
师指出:我们把连接圆心到圆上任意一点的距离叫做半径。半径一般用字母“r”表示。
板书:半径。
3、请同学们继续观察,刚才我们把圆对折时,每条折痕都从圆的什么地方通过?两端都在圆的什么地方?(出示课件)
生:回答。
师:我们把通过圆心并且两端都在圆上的线段叫做直径,直径一般用字母“d”来表示。
板书:直径
㈢研究圆的特征
1、师:请同学们在圆形纸片上画半径,10秒钟看能画出多少条?生:由学生完成。
师:如果继续让你们画,你们能画出多少条?
组织学生讨论。
师:你们能发现这些半径有什么特点?
生:……
师:在同一圆内,有无数条半径,所有半径的长度都相等。
2、想一想:直径有什么特点呢?
组织学生讨论:
师:在同一圆内,有无数条直径,所有直径的长度都相等。
3、请同学们再用直尺量一量同一个圆里半径和直径的长度?看看它们之间有什么关系?
圆的认识教案3
教学内容
义务教育课程标准实验教科书青岛版小学数学六年级上册52---54页。
教材简介
这个信息窗呈现的是各种各样的轮子。拟通过引导学生观察让学生发现各种各样的轮子都是圆的,引发学生提出轮子为什么设计成圆形的疑问,自然而然的'引出对画圆以及圆的特点的研究,明确怎样画圆、直径与半径的关系,从而明白轮子为什么设计成圆形的。
教学目标
1.结合具体情境,学习圆的认识。
2.培养学生的动手能力和通过多种方法解决问题的能力。
3.激发学生探求知识的兴趣,提高合作探索知识的能力。
教学过程
第1课时
一、创设情境
谈话:同学们,你认识这些交通工具吗?仔细观察他们有什么共同点?
出示情境图,学生观察。
谈话:这些轮子都是圆形的。根据这些信息,能提出什么数学问题?
学生可能提出:轮子为什么设计成圆形的呢?……
圆的认识教案4
一、通过操作初步感受圆的特征
1、同学们,你们认识这些图形吗?(有长方形、正方形、三角形、平行四边形、梯形、圆形)
2、在每个小组的袋子中有许多各种形状的纸片,当然这些图形的纸片也有,其中圆形纸片有四张,每人只能摸一次,你能摸出圆形纸片吗?(小组活动,袋子中还有椭圆形纸片。)
你们摸到了什么?为什么会摸出椭圆形纸片?
为什么不会摸出这些图形的纸片呢?(比较得出圆是由曲线围成的图形)
二、自主探索研究圆的特征
1、椭圆和圆虽然都是曲线围成的图形,但是可以比较容易地加以区分,也就是说,圆和椭圆相比,圆是有特殊之处的。圆究竟有什么特征呢?你们想自己研究吗?
2、取出在家剪好的圆纸片,你们在家练习了画圆,说一说画圆有什么诀窍。
结合回答,教学圆心。
3、下面可以研究圆的特征了
活动要求:(投影)
1、自己通过比一比、折一折、量一量等方法找出圆的'特征,写在记录纸上。
2、在小组中和同学交流。
3、小组总结圆的特征。
汇报:
(1)椭圆从中心到圆上的距离不相等,圆从圆心到圆上的距离相等。(教师要结合教学半径)
(2)椭圆和圆对折后都可以重合,椭圆有两种对折方法,圆有无数种对折方法。(教师要结合教学直径)
(3)椭圆没有圆圆。(提问:为什么椭圆不圆?)
(4)半径与直径的关系
三、运用圆的特征解决实际问题
1、圆的特征在生活中得到广泛的应用。
车轮为什么做成圆形?车轴为什么要安放在圆心?
2、圆的特征还能解决一些游戏问题
套圈游戏
课件演示画面:15个小朋友在玩套圈比赛,离杆心有近有远。动画:各人投了一个套圈,小明最后投,只有小明套中(小明离杆心最近)。小明高兴的神态说:还是我投得准
教师提问:同学们,对小明的话,你们有什么想法?(引出这样比赛不公平,大家要站在距离杆心同样远的位置)
(2)课件演示画面:15人站成一行,仍然距离杆心有远有近。
教师提问:同学们,站成一条直线行吗?到底要怎样才公平呢?(要站成圆形才公平)
课件演示画面:15人围成圆形,但杆心不在圆心。
教师提问:要站成怎样的圆形才算公平?(围着杆心,杆心要在最中间、中心)
在操场上怎样才能画出这样的一个圆形来呢?(可以把绳子拉直,一端固定不动,一端拴上粉笔,)
课件演示:为什么要一端固定不动?为什么要拉直绳子?
把小明站的位置看作圆上的任意一点,现在15人任意地站在圆上,你觉得公平吗?(公平)为什么?
3、利用圆的特征可以了解更多的信息。
(1)已知圆的半径(直径)求直径(半径)
(2)在正方形中画最大的圆,已知正方形边长。
(3)在长方形中画最大的圆,已知长方形的宽。
四、总结
如果有一位同学病假,你要打电话告诉他今天学的内容,想一想,你要告诉他什么?
圆的认识教案5
教学目标:
1、使学生认识圆,理解圆的圆心、半径和直径概念。
2、使学生掌握圆的特征,理解和掌握在同一个圆里半径和直径的关系。
3、初步学会用圆规画圆,培养学生的作图能力、
4、使学生进一步体验圆与生活的联系,从数学的角度感受圆的美,激发学生数学学习的热情和兴趣。
教学重点:认识圆,掌握圆的特征。
教学难点:掌握画圆的方法以及理解同圆中半径与直径的关系。教具准备:多媒体课件,圆规
教学过程:
(一)引入
1、你知道今天要学什么吗?怎么知道的?
2、说说生活中见到的圆。(注意纠正学生表述有误的地方)师:这样说下去,你们觉得能说的完吗?
师:正所谓,圆无处不在。古希腊的毕达哥拉斯说过:“在一切平面图形中,圆最美!”我们来欣赏一下,圆的美体现在哪。(课件展示生活中的圆)
师:好看吗?美吗?今天,就让我们一起更进一步来认识圆(板书),感受圆的存在和圆的美。
(二)探究新知
1、第一次画圆
(1)只看只说不行,咱们来动手画一画。
要求:在白纸上任意画一个圆,可参照书p57。
(2)个别同学的圆画的不标准,哪出问题了?
引出圆规用法:手握顶,针尖固定,距离保持不变。(师演示)
2、第二次画圆
(1)要求:能不能想个办法,让咱们全班画出的圆一样大呢?生:统一两脚间的距离/统一半径(师抓住半径板书)
师:意思是说,咱们全班同学只要把圆规针尖和笔尖之间的距离统一一下,画出的圆就一样大。你想象一下,这样可以吗?师:那咱们就统一把它定为3厘米,画出这个圆。
(2)圆倒是有了,可要是有人问起,这是个多大的圆,我们该怎么回答呢?
生:半径3厘米/直径6厘米(师抓住直径板书)
师:有同学提到了半径、直径,那到底什么是直径、半径呢?请同学们把书翻到56页,寻找一下答案吧。(生自学)
你知道了什么?生汇报
a、圆心:通俗的讲,圆心就是圆的中心,用圆规画圆时,中间固定的这一点就是,通常用字母o表示。
b、半径:连接圆心和圆上任意一点的线段叫半径,通常用字母r表示。(生板演,师提示是线段)
师:说说画半径的时候要注意什么?在自己刚画的圆上画一条半径。
师:老师有个问题,一个圆里只能画一条半径吗?在自己的圆里试试,看能画几条。你得到什么结论呢?
生:一个圆里有无数条半径。
师:长度呢?
生:都相等。
师:想象一下,半径不同,圆的大小会怎样?
c、直径:通过圆心并且两端都在圆上的线段叫直径,通常用字母d表示。
找一生上台板演,其他学生在刚才的圆上同样画上一条直径,并标上字母。
师:思考一下,在一个圆里,直径有多少条?长度怎样?
(3)再次观察自己的圆,你还有什么发现?(直径、半径的关系)生汇报,师板书
师:直径是半径的2倍,它的前提是什么?(同圆或等圆)
(4)其实早在20xx多年以前,,我国古代就有对圆的记载,墨子在一部著作中,与这样的描述:“圆,一中同长也。”所谓“一中”就是指---圆心,“同长”
是什么意思呢?你能模仿古人的语气,读一下这句话吗?
师:我们古人的这个发现,比西方早了1000多年,听了这个信息你们觉得怎么样?
(5)我们今天一起认识了圆,现在来看看,圆和我们以前学过的平面图形有什么不同?(直线图形/曲线图形)
(三)练习巩固
1、选择
(1)画圆时,圆规两脚间的距离是()。
a、半径长度b、直径长度
(2)从圆心到()任意一点的'线段,叫半径。
a、圆心b、圆外c、圆上
(3)通过圆心并且两端都在圆上的()叫直径。
a、直径b、线段c、射线
2、判断
(1)圆的直径是半径的2倍。()
(2)圆有无数条对称轴。()
(3)画圆时,圆心决定圆的位置。()
(4)要画直径是4厘米的圆,圆规两脚间的距离是4厘米。
(5)半径2厘米的圆比直径3厘米的圆小。()
3、图中哪些是半径?哪些是直径?哪些不是,为什么?)(
4、阴阳太极图:你知道了什么?
5、拓展:为什么车轮都要做成圆的,车轴应装在哪里?
(四)全课小结
1、这节课你有什么收获?
2、师:圆是美的化身,因为有了圆,我们的世界才变得如此美妙而神奇。因此人们喜欢用圆来表达彼此美好的祝愿,你们知道的词语有哪些?那我就祝愿所有的同学在十五小的学习和生活都能圆满,今后能用自己的勤劳和智慧圆自己的美丽梦想。也祝愿各位听课的领导,老师们事事圆满如意!
圆的认识教案6
学材分析
教学重点:
通过动手操作认识圆,掌握圆的特征。
教学难点:
画圆
学情分析
学生已有一定生活经验,教师应把重点放在画圆上。
学习目标
1.在想象与验证、观察与分析、动手操作、合作交流等活动中认识、掌握圆的特征。
2.在开放式画圆的情景中,会用圆规等工具画圆。
3.在问题解决过程中,不断探求事物的本质特征和事特的合理性。
导学策略
导练法、迁移法、例证法
教学准备
圆的模型、圆规、三角板、投影仪、投影片
导学流程设计:导入--探究新知--巩固练习--总结
教师预设
学生活动
教学过程:
一、圆的认识
1.生活中哪些地方可看到圆形?与学过的图形比有什么不同?(你觉得这些图形美吗?)
二、展开
1.讨论:书中的三幅主题图,哪种方式较公平?(并说说为什么第三种最公平?)
2.画圆的条件
你(自己)能想办法画一圆?指名说说。画圆有哪些方法?画一个圆必备条件是什么?
3、半径、直径的认识
操作:
把圆对折、打开、任意换方向再对折;
描出折痕;
找一找折痕与折痕之间、折痕与圆之间有什么关系?(你能说说这些折痕有什么特点?)
(学生先独立做,当学生有交流欲望时,教师建议大家互相交流)
2.汇报:
(1)展示:图形、折痕(师在黑板上贴一个大圆)
(2)发现:(有些说出名称,随即让学生指一指)交点,也就是圆的中心点称圆心;折痕这条线段称圆的直径;
圆心到圆上的线段称半径;
对折后两侧能完全重合。
(3)整理:圆心通常用字母O表示;圆的直径通常用字母d表示,怎样才是直径呢?(一组判断)(给出圆上、圆内、圆外等名称)
得出“从圆心到圆上一点的线段”;
从圆心到这一点的线段是半径,到这一点呢?……“任意一点”;(要学生明白是圆上的一点)
(4)圆有几条半径?它们的长度怎样?所有的半径都相等。你怎么知道的?有几条直径你知道吗?长度呢?
3.练习:口答题(表格)
4.小结:我们认识了圆各部分的名称,了解了它的特征,(练习:哪些是圆?)根据圆心到圆上任意一点都相等,画出圆。怎么画?
5.画圆
(1)提供材料:绕线图钉、两支笔、圆规等;
(2)画圆,并说说你是怎样画出来的?(小组交流,想出更多的画圆方法);
(3)展示:(要求简练的语言、并演示)
描:用圆形物体,描下它的轮廓,这就是圆。
绕线图钉:与课开始时相同。
两支笔:确定长度,转纸一周。
圆规:一头定点、另一头(有铅芯或墨水的一头)旋转一周:
定r、定O、绕一周。
固定的尖点就是圆心,两脚间的距离就是半径?(每一种方法都能与圆的圆心、半径等建立联系)
(4)老师也介绍一种用带孔的尺,固定一个孔,另一头绕一周用圆规画半径为2厘米、直径为6厘米的.圆各一个。
画的对吗?一大一小,这由什么决定的?(半径、直径)
两样半径2厘米,画在这里,有什么不同?这又是由什么决定的(圆心)
(指出圆心的作用是确定位置、半径与直径的作用是确定圆的大小)
三、练习:
1、指出下列圆中哪条是半径哪条是直径?
2、任意画一个圆,并在这个圆中画一条半径和直径
四、总结
五、作业
学生汇报
同桌讨论
学生操作
六年级
学生练习画圆
教学反思
要让学生明白只有在同圆或等圆内,所有的半径才相等;所有的直径才相等;半径才是直径的一半,直径才是半径的2倍。
圆的认识教案7
一、教案背景
1、面向学生:小学学科:数学
2、课时:1
3、学生课前准备:
(1)复习所学过的平面图形。
(2)画图工具、自制圆片、硬币等。
二、教学课题
通过学生人人参与,动手操作、观察、思考等教学活动,使学生认识圆,掌握圆的特征。
1、知道圆的各部分名称,知道同一圆内半径和直径的特征及二者的关系,能根据这种关系求圆的直径或半径。
2、学会用圆规画圆,了解其它画圆工具的使用方法。
3、使学生进一步积累认识图形的学习经验,培养学生的观察能力、动手操作能力、抽象概括能力和合作交流能力,增强空间观念,发展数学思维。
3、使学生进一步体验圆与生活的联系,从数学的角度感受圆的美,激发学生数学学习的热情和兴趣。
三、教材分析
“圆的认识”是在学生已经认识了长方形、正方形、平行四边形、三角形、梯形等平面图形和初步认识圆的基础上进行学习的。 “圆的认识”是一节几何内容的课,是平面几何从直线平面图形到曲线平面图形的突破,无论从内容的本身或是研究方法,都与以前有所不同,同时也是后继学习内容――圆周长、面积、扇形、圆柱、圆锥的基础。
教学重点:掌握圆的特征;理解同圆或等圆中半径和直径的关系。
教学难点:通过动手操作体会圆的特征。
教学准备:
1、多媒体课件。
2、圆规,圆形纸片。
四、教学方法
整堂课的设计,力图从学生的生活经验和已有的知识背景出发,采取观察操作,自主探索的学习方式,帮助他们在实践活动中真正理解和掌握基本知识和技能,体验成功的喜悦,增强学习数学的信心,让课堂真正焕发活力,让学生真正成为学习的主人。课堂最后,引用借鉴古代关于圆的记载,既加深了学生对圆的认识,又使学生我国古代文化的博大精深有所了解。
五、教学过程
(一)引入
谈话:今天非常高兴和同学们一起来学习新的知识。回忆一下,我们以前学过哪些平面图形?今天我们再来学习一个新的平面图形。――圆。以前我们已经初步了解了圆,这节课我们将更深入的认识圆。【板书课题圆的认识】
说到圆,相信大家都不会陌生。你能说出你平时见到的物品中,哪些是圆形的吗?(生举例师强调――指物品的表面)
师:看来大家平时非常注意观察。老师也搜集了一些有关圆的图片。我们一块来欣赏一下。
师:看来圆和我们的生活息息相关,无处不在。有人说因为有了圆,我们的世界才变得如此美妙而神奇。可是,你有没有想过我们刚才说过的这些物品为什么是圆形的呢?例如车轮做成方的行吗?这节课就让我们带着这个问题一起走进圆的世界,领略其中的奥秘。
(二)展开
1、师:刚才我们看了这么多的圆,说了这么多的圆。想不想亲自动手画一个?
用什么工具画?生:用圆规。
师:下面同学们试着用圆规在纸上画一个圆。画圆的时候,要边画边想你是怎么画的?学生操作画圆。
师:画好了吗?让一个画得好的同学说一说用圆规画圆时应注意什么?
(生:圆规的尖不能移动;两脚间的距离不能变;旋转一周;拿的姿势)
师:(边演示课件,边讲解)画圆时,要用手捏住圆规顶端的手柄,稍用力将针尖的一脚按下,使针尖固定,再旋转圆规的另一只脚。
总结:定距离――定针尖――旋转一周
大家都学会了吗?现在是不是很想再试一试?好,下面就再画一个圆。不过在画之前我有一个问题要问,我发现刚才同学们画的圆中,有的同学画的大,有的同学画的小。这是为什么呢?(圆的大小由笔尖和针尖的距离决定)
这次画圆,老师有一个小小的要求,我们全班同学画的圆能不能一样大?应该怎么办?(笔尖和针尖的距离一样就行)下面我们就把笔尖和针尖距离统一定为3厘米。试着画一下。学生再次操作画圆。画完小组检查。看是否差不多大,如果不一样大想一想是什么原因。
2、认识圆的特征
(1)认识圆心、半径、直径
师:我们现在学会了画圆。看着孤零零的一个图形,有没有觉得缺少了点什么?对,没有标注上名称。每个图形各部分都有自己的名称,比如长方形有长和宽,三角形有底和高。圆中各部分也有自己的名称。想不想知道?下面自学课本94页的有关知识。
学生自学课本概念。学生小组交流。
谁能说一下,通过刚才的学习和交流,你学到了哪些知识?
什么是圆心?什么是圆的半径?什么是圆的直径?【板书名称】
指名上黑板画,其他画在自己的圆上。并用字母表示。
画完后小组同学互相检查。
我们现在知道了圆各部分的名称,刚才你画的圆可以怎样描述?半径3厘米的圆现在量一量你画的圆半径是不是3厘米?测量完后小组互相检查并交流。
(2)认识圆的特征
这么快我们已经学会了画圆,并且知道了圆的很多知识,可是,圆中还有更多的奥秘在等着大家去探索。大家想不想知道圆的更多的奥秘?下面我们继续探究。拿出你准备好的圆形纸片。
学生小组合作动手把你手中的圆纸片,借助尺子圆规等工具。摸一摸、折一折、量一量、画一画、比一比,相信你一定会有精彩的发现。有信心吗?
要求:把你的发现记录下来。
有了精彩的发现要和大家一块交流。出示学生发现结论:
圆有无数条半径,无数条直径;(折、量、画)有道理吗?说明理由。
所有半径都相等,所有直径都相等;(观察、量、折、画的过程。补充:同圆)
一个小组的发现可能不完善,发挥我们集体的智慧使我们的发现更加完美。
直径的'长度是半径的2倍,半径是直径的一半。(折、观察、量)如果用字母怎么表示?【板书公式】。
刚才画的圆还可以怎样描述?直径6厘米的圆。随机举例直径半径
小组说一条自己认为最特别的在全班交流。
圆是轴对称图形;圆是由曲线围成的图形;圆没有长和宽;
我们的同学表现非常棒,看来集体的智慧是无穷的,短短的时间就发现了这么多有关圆的奥秘。其实呀,早在我国古代名著《墨经》中记载:“圆一中同长也”。你知道这句话的意思吗?是指圆(上任意一点到圆心的距离都等于半径)也是揭示了同一圆中半径都相等的道理。还记得上课开始提出的问题吗?
出示:车轮为什么是圆形的?出示课件帮助理解。有困难吗?小组讨论一下。
小结:看来生活中的很多现象,都蕴含着丰富的数学知识。人们认识了圆,然后利用圆为人们服务,如果没有了圆我们的生活会失去许许多多的精彩。
(三)应用
师:同学们对圆有了一定的认识,下面我还是要考考大家。
最早画圆就是利用正方形内最大的圆和正方形的关系画圆的。出示:“圆出于方,方出于矩”,所谓圆出于方,就是说最初的圆形并不是用现在的这种圆规画出来的,而是由正方形不断地切割而来的。所谓方出于距,是说方的图形是用距(直尺)画出来的。
这时我记起了一句话“无规矩不成方圆”如果没有圆规你真的就不能画一个圆吗?有难度可以讨论交流一下。
同学们不但会用圆规画圆,而且想了这么多画圆的方法。其实这些办法和圆规画圆的方法是一个道理的。
(四)谈收获
这节课你有什么收获?
看来同学们这节课的收获真不少。其实圆中真是蕴含着无穷的奥秘。古希腊一位数学家也曾说过,在一切平面图形中,圆是最美的。我国人们对圆也情有独钟,“圆”在中国传统文化中被赋予了吉祥如意,饱满丰腴的意义,它是中国传统文化的象征。例如一件事情完成得很出色,就说――圆满;祝福新人用‘花好月圆’;八月十五的月亮是圆圆的,就把这天定为中秋节,一家人团聚,就叫做――团圆,吃着圆圆的月饼。这一节课,通过对圆的学习,感受到了圆的无穷魅力,也画上一个圆满的句号,看,这个句号也是圆的呢!
六、教学反思
本节课注重参与式教学,通过情境导入,探究新知,反馈练习等学习方法的综合运用,充分让学生参与学习的整个过程,人人动手操作,极大调动了学生学习的积极性,培养了学生主动参与学习过程、自主探究能力和创新能力,圆满完成了数学任务,实现了教学目标。
圆的认识教案8
教学内容:教材第57—58页。
教学目标:
1.学生在画圆的过程中,认识圆,掌握圆的各部分名称。
2.通过动手操作、实验观察探索出圆的特征及同一个圆里半径和直径的关系。
3.初步学会用圆规画圆,培养学生的作图能力。
4.培养学生观察、分析、抽象、概括等思维能力。
教学重点
在动手操作中掌握圆的特征,学会用圆规画圆的方法
教学难点
理解圆上的概念,归纳圆的特征
教学准备:圆形实物、硬币、长方形、正方形、三角形学具、剪刀、圆规等
教学过程:
一、创设情景,导入新课
1、出示第57页主题图,谈话:
(1)图上画了些什么?你了解到哪些信息?
(2)根据画面情境,你能找出圆形的物体吗?
2、揭示课题:在我们日常生活中,从精巧的手工艺品到气势宏伟的各种建筑,到处可以看到大大小小的圆。今天我们就来研究圆。
二、探索交流,解决问题
1、画圆
(1)你能想办法在纸上画一个圆吗?
(2)学生利用生活的物品或工具来画圆
(3)探究用圆规画圆的方法。
A:小组合作探究用圆规画圆的方法和步骤。
提出要求:①圆规为什么能画圆?它有什么特别之处?
②比一比:用圆规画圆有什么优点?
B:汇报交流。
C:小结圆规画圆的方法。
2、认识圆的各部分名称。
(1)学生操作:让学生把在纸上画好的`圆剪下来,对折,打开,再换个方向对折,再打开,反复折几次,折过几次后,你发现了什么?
(2)集体交流:折痕相交于一点,交点位于圆中心。
(3)讲解:圆中心的一点叫圆心,用字母O表示。
(4)画一画,认识圆的直径和半径。
a、学生沿折痕画一画,发现这条线段通过圆心。
b、讲解:通过画一画,我们找到了圆内一条通过圆心的线段,它就是圆的直径,用字母d表示。
c、学生再连一连圆心到圆上某一点得到另外一条线段。
d、讲解:圆心到圆上某一点得到的线段就是圆的半径,用字母r表示。
e、学生在圆上标出d和r。
f、交流:尝试给直径和半径下定义。
(5)小结:圆中心的一点叫圆心,用字母O表示。连接圆心和圆上任一点的线段叫做半径,用字母r表示。通过圆心并且两端都在圆上的线段叫做直径,用字母d表示。
3、探究直径和半径之间的关系。
A:小组操作讨论:在同一个圆内,有多少条直径,多少条半径?直径和半径的长度有什么关系?你能用含有字母的等式表示吗?
B:汇报。
C:数学游戏:小组赛说:r=(),d=()
4、提出问题:圆的中心位置是由什么决定?半径决定圆的什么?
三、巩固应用,内化提高
1、完成第58页“做一做”第1题。
学生先独立思考找圆心的方法,然后画一画找到圆心和直径。
2、完成第58页“做一做”第2题。
学生独立完成,同桌间交流。
四、回顾整理,反思提升
谈谈这节课的收获和体会。
圆的认识教案9
教学目标:
1、使学生认识圆,知道圆的各部分名称、
2、使学生掌握圆的特征,理解和掌握在同一个圆里半径和直径的关系、
3、初步学会用圆规画圆、
4、培养学生观察、分析、综合、概括等能力、
教学重难点:
理解和掌握圆的特征,理解和掌握在同一个圆里半径和直径的关系、教学过程:
一、创设情境,生成问题
同学们,今天老师带来了几张图片和大家分享,大家一起看电子白板,观察一下这几张图片,你有什么发现?
(第一、二两幅图是围观人群,他们站立的形状大体都是圆;,第三、四两幅图是鸟巢和北京国家剧院,第五张是圆的下水道盖和井盖其设计也都是圆形)
那么人群为什么站成圆形,国家剧院和鸟巢设计成圆形的呢?下水道盖和井盖为什么也设计成圆形呢?带着这两个问题,我们进入今天的新课:圆的认识。
二、探索交流,解决问题
初步感知圆:利用手中的易拉罐,小药瓶等物品画一个圆,体会和我们以前学过的平面图形(三角形,正方形,长方形,平行四边形,梯形……)有什么不同?
(因为它不是线段围成的,而是由曲线围成的,所以它不是直线图形。)我们把它叫做平面上的曲线图形。
课件出示自学要求:
自学课本56---57页内容,利用手中的圆形纸片,折一折,画一画,量一量,思考以下问题:
1、什么叫做圆心?半径和直径?在你的圆形纸片上画出圆心、半径和直径,并用字母表示出来。
2、在同一个圆中有多少条半径?它们的长度有什么关系?
3、在同一个圆中有多少条直径?它们的长度有什么关系?
4、在同一个圆中,直径的长度与半径有什么关系?用字母怎样表示它们的关系?
5、怎样用圆规画圆?试着用圆规画一个半径是3厘米的圆。
1、圆心
把手中圆形纸片进行对折,打开,用铅笔把折痕画下来,再换个方向,再对折、再打开,反复对折多次,观察一下,用笔画出的折痕有什么特点?
(相交于圆中心的一点。)
我们把圆中心的这一点叫做圆心。一般用字母o表示。
2、半径
连接圆心和圆上任一点的线段叫半径。半径一般用字母r来表示。
根据半径的概念同学们想一想,在同一个圆里可以画出多少条半径?所有半径的长度都相等吗?
(根据半径的概念,在同一个圆里可以画出无数条半径,经过测量发现所有半径的长度都是相等的。)
3、直径
同学们继续观察:刚才把圆对折时,每条折痕都从圆的什么地方通过?两端点都在圆的什么地方?
(我发现每条折痕都经过圆的圆心。)
(我发现每条折痕的两个端点都在圆上。)
我们把通过圆心并且两端都在圆上的线段叫做直径。一般用字母d来表示。根据直径的概念,在同一个圆里,可以画出多少条直径?自己用尺子量一量同一个圆里的几条直径,看一看,所有直径的长度都相等吗?
(在同一个圆里,要想画出所有的直径是不可能的,我认为在同一个圆里可以画出无数条直径。)
(通过测量,我发现我所测量的直径长度都相等。)
在同一个圆里有无数条直径,并且所有直径的长度都相等。
4、半径和直径的关系
通过刚才的学习我们知道,在同一个圆里有无数条直径,所有半径的长度都相等;有无数条直径,所有直径的长度也都相等。那在同一个圆里,直径的长度与半径的长度又有什么关系呢?如何用字母表示这种关系?小组讨论一下。
(经过讨论我们组发现:在同一个圆中,直径的长度是半径长度的2倍。)(我们组发现,在同一个圆中,半径的长度是直径长度的一半。)
(我们组认为如果用字母表示这种关系可以表示为:d=2r,r= d)2
在同一个圆里,直径的长度是半径长度的2倍,半径长度是直径长度的。用
d关系式可表示为:d=2r,r= 2
5、圆的画法
圆的特征咱们已学了很多,根据圆心到圆上任意一点的距离都相等这一特征,同学们可以用手中的工具画出圆吗?
(能,我认为可以用圆规来画。)
那同学们根据幻灯片上的步骤画出以任意半径的一个圆,并且用字母分别标出它的圆心、半径和直径。
同学们认为在画圆时用注意些什么
(我认为在用圆规画圆时,圆规的`两脚的距离不能改变。有针尖的一脚不能移动。旋转时要把重心放在有针尖的一脚。)
很好,那同学们在同组之间比较一下画出的圆,看有什么发现?
(我发现每个人所画的圆都不一样。)
想一下什么决定圆的位置?什么决定圆的大小?
(我认为圆心决定圆的位置。半径决定圆的大小。)
小结:对于本节学习的知识,你还有什么不明白的地方或者新的疑问,请提出来与大家共同探讨。
三、巩固应用,内化提高
同学们都很聪明,那现在咱们就一起来做一做题目,看看你学会了没有。课件出示练习题目。
1、填空
(1)今天我学习了圆的知识。我知道用o表示(),用r表示(),用d表示()。直径和半径的关系是()。
(2)我还学会了画圆。画圆时圆规两脚分开的距离是(),针尖一脚固定的一点是()。
2、判断题
(1)半径是射线,直径是直线。()
(2)圆的直径都相等。()
(3)直径是圆内最长的线段。()
(4)圆心决定圆的位置,半径决定圆的大小。()
3、对口令
d=6、4cmr=()cmr=1、25cm d=()cmr=1、9cm d=()cm
4、思考题:
(1)为什么车轮都要做成圆的?车轴要装在哪里?
(2)学校田径运动会即将举行,你有办法帮学校在操场上画出一个半径为10米的圆吗?
5、解决问题
你能用圆的知识解释下列现象吗?
(1)人们在围观时,为什么会自然地围成圆形呢?
(2)井盖为什么是圆的呢?
四、回顾整理,反思提升
这节课同学们的表现都非常好。相信每个人的收获都很大,谁来说一下自己的收获?
我会判断直径和半径了。
我能画出非常标准的圆了。
我知道了在同一个圆中,直径的长度是半径长度的2倍。半径长度是直径长度的。
圆的认识教案10
教学目标:
1、通过观察、想象、归纳,经历圆的概念的得出过程,并掌握圆的概念。
2、经历圆心、半径与直径等概念的发生过程,掌握圆心、半径与直径等概念。
3、能够独立探索与发现半径与直径的属性以及它们的关系。会用圆规画圆。
4、通过操作、想象培养空间观念,积累从特殊到一般的归纳,概括的经验。
教学重点:使学生掌握圆的定义及圆的各部分名称及特征,进一步探究半径与直径的关系及用圆规画圆。
教学难点:归纳并理解圆的定义。
教学准备:课件、作业单、圆片、圆规。
教学过程:
创设情境,激趣导入
师过渡:同学们看过《奔跑吧兄弟》这个节目吗?其实节目中不仅仅有游戏,还有一些数学知识呢!黄队接受到了一个寻宝任务,宝物埋在距离小旗三米的位置。
提问:宝物可能在什么位置?(学生先汇报再白板演示)
探究圆的定义
师:1、如果用3厘米代表3米的距离,(用直尺示范三厘米)
2、请你在作业单上将你认为宝物可能在的位置像这样都点出来。
3、展示汇报。(一生到展台前展示)
请同学们抬头,看这位同学画的点。
提问:有比他画的点多的吗?如果继续画,还能不能点出可能的位置呢?
师:请同学们想象一下,如果把同学们画的点都汇集在这一张纸上面会是什么样子?(学生可能说到是个圆)
4、揭示课题
我们来认识一个新的平面图形:圆(板书:圆)这节课的主要任务就是认识圆(板书:认识)
师问:圆是由什么组成的图形?
生:无数个点
师:是什么样的点?
生:到一个点的距离都相等的点。
5、师小结:我们知道了到一个点的距离等于3厘米的所有点组成一个圆。
提问:那么到一个点的距离等于4厘米的所有点组成一个什么图形?(完整的说)
到一个点的距离等于1分米会组成一个什么图形?(学生回答)
6、你还能像老师这样描述一个圆吗?
师提问:谁能对照板书来说一说什么样的图形是圆?(同桌互相说一说)
出示圆的定义:我们一起来说下什么是圆(学生齐读一遍)
其实圆就是由无数个点组成,也可以说这些点就说在圆上。
请同学在白板上点出圆上的点。
认识圆的各部分名称
(一)、认识圆心:
请你快速把刚才画的点连成圆。
比较学生连成的圆引出圆心。
(1)看看这位同学连出来的图形是不是圆?(展示手画的圆)
追问:这是不是圆?为什么?(距离不等于3cm)选择一个点进行验证。
(2)接着看(出示圆规画的圆)
提问:你是用什么画的?(圆规)
师:圆规是我们画圆的专用工具,谁和他一样也是用圆规画的?请你来说说怎样用圆规画圆。
3、指各学生介绍用圆规画圆的方法:
(尖尖的地方按住)哪个尖尖?(针尖)按在哪里?(按在点上)
师:针尖所在的点,叫做圆心,用字母o表示。
4、在白板的圆上标出圆心,请同学们也标出你们的圆心。没有用圆规画圆的同学请先用圆规画圆,再标出圆心。
提问:除了确定圆心,还需要确定什么?
①角度,谁懂他的意思,其实是指什么?
②长度,谁懂他的意思(两个同学说)也就是指圆规两个脚之间的距离不变。
(指着针尖)这个脚在哪里?(圆心)另一个脚在哪里(圆上)
师:两脚之间的距离其实就是圆心到圆上点的距离。
(二)、认识半径:
1、请同学们把圆心和圆上一点连成线段。(学生动手连半径)
2、师介绍:这条线段就是半径(板书:半径)字母r表示。(在白板的.圆上用字母表示半径)
3、观察半径,提问:谁来说说什么是半径?(学生概括半径的意义)
4、学生进行汇报。连接圆心和圆上任意点的线段叫半径。
5、学生通过读加深对半径概念的理解。(学生边读老师边圈出关键词)
师提问:你还能不能再画几条半径呢?
6、学生在自己画的圆内画半径。
提问:你画出了几条?你画出了几条?你呢?还能再画出半径吗?(还能)你发现了什么?(半径有无数条)
7、观察半径,它还有什么特点?(相等)
师:如果我现在想要画一个半径为二十厘米的圆应该怎么办?
生反馈,师黑板演示画圆。
请在作业单上画一个半径为2厘米的圆,对比你们画的圆和老师画的圆一样大吗?(不一样)也就是说这里半径相等指的是同一个圆内。
(三)、认识直径:
师:请同学们拿出老师事先给你的圆,将圆只对折一次,再打开,观察一下,它和之前有什么不同?(折痕)
1、请你借助直尺将这条折痕描出来。
2、我们发现这条折痕描出的是一条线段。
2、这条线段有什么特征?
3、学生汇报:
师适时板书:通过圆心两端在圆上
4、师小结:其实像这样通过圆心、两端都在圆上的线段叫直径,用字母d表示。
5、一起说说什么叫直径?
6、学生总结:通过圆心并且两端都在圆上的线段叫直径。(学生齐读)
7、请同学们在圆上画出直径,并且用字母表示出来。
提问:将圆换个方向对折,打开,换个方向再对折再打开。如果像这样折下去,你发现了什么?(可以画无数条)请根据直径的定义在圆上再画几条直径,并且量一量,看看直径还有什么特点?
(四)、研究半径和直径的关系
师小结:在同一个圆内,半径有无数条,并且相等,直径也有无数条,也相等,那么半径和直径有没有关系呢?
1、在作业单的圆内,先画出一条半径,再画一条直径,量一量,看看半径和直径之间到底有什么关系。并将结果填写在作业单上。
半径(cm)
直径(cm)
半径和直径的关系
3、学生进行同桌合作学习,探究半径与直径的关系。
4、学汇报交流。板书:d=2r r=d/2
5、练习:对口令
如果一个圆半径是4厘米,直径是多少?
如果一个圆直径是5分米,半径是多少?
(五)、研究圆心和半径的作用:
1、生活中形形色色的物体中都有圆,我们一起来看看,(课件出示圆形物体)
2、梳理圆心与半径的作用:
师:这些圆有大有小,是什么决定了圆的大小?(半径)是什么决定了圆的位置?(圆心)
圆的认识教案11
教学目标:
1.让学生在观察、操作、交流等活动中感知并认识圆柱和圆锥的特征,知道圆柱和圆锥的底面、侧面和高。
2.让学生在活动进一步积累认识立体图形的学习经验,增强空间观念,发展数学思考。
3.让学生进一步体验例立体图形与生活的联系,感受立体图形的学习价值,提高学习数学的兴趣和学好数学的信心。
教学重点难点:
在充分感知的基础上探索圆柱和圆锥的特征,知道各部分名称。
教学具准备:
配套课件、一些圆柱和圆锥形状的实物,学生四人小组准备好长方形、三角形、半圆形的小旗。
教学过程:
一、创设情境,导入新课
1.课件显示:例1情境图及自拍图片(茶叶罐、薯片罐、蛋筒、铅笔长方体、正方体等)
2.师:这些物体的形状是各式各样的。其中哪些物体形状我们比较熟悉?你能说出它们各是什么形体吗?(生答)
3.除了长方体、正方体还有些形体你认识吗?(学生随意说说)
4.师:看来大多数同学已经能叫出这两个新朋友的名字了。今天我们就近距离的接触新朋友,充分的了解他们。板书:圆柱和圆锥
二、联系实际,自主探索
1.教学圆柱的认识
(1) 观察例1中的物体,你知道哪些物体的形状是圆柱吗?(生答,课件显示)
(2) 生活中你见过哪些物体时圆柱形的?(学生举例)
(3) 认识圆柱的面
课件出示研究题:
① 圆柱是由几个面围成的?长方体和正方体有这样的面吗?
② 上下两个面都是什么形状?大小相等吗?用什么方法可以验证?
③ 拿出准备好的圆柱,摸一摸有什么感觉?
④ 圆柱上下一样粗吗?
学生小组合作探讨研究题,教师巡视聆听学生的意见。
全班交流反馈。情各小组代表发言。在学生发言的基础上,教师配以课件演示小结:
① 圆柱有3个面围成。(课件显示红色)长方体和正方体没有这样的面。教师讲解:圆柱的上下两个面叫做圆柱的底面,围成圆柱的面叫做圆柱的侧面。(课件上显示名称)
② 上下两个面都是圆形,大小相等。(学生演示自己的验证方法,教师课件演示上面的圆形往下移动,和下面的圆形完全重合)
③ 用手摸的感觉是底面是平的`,侧面是弯曲的。
④ 圆柱上下是一样粗的。(明确课本上所说的圆柱都是直圆柱)
(4) 认识圆柱的高
① 教师:圆柱的高在哪里呢?是指哪一段的距离?(同桌互相指一指自己带来的圆柱的高)
② 指名上台指给全班学生看。明确:圆柱的高是上底面到下底面的距离。(课件显示)
③ 你能找到几条这样的高呢?(明确圆柱的高有无数条)
(5) 练习
下面的物体,哪些是圆柱?为什么?
学生口答并说明理由。
2.教学圆锥的认识
⑴课件显示例题1中的圆锥物体。日常生活中你见过这样的物体吗?(学生举例说说)
⑵拿圆锥又有哪些特点呢?请你们观察自己带来的圆锥
物体,完成以下表格。
物体名称 底面 侧面 顶点 高
圆柱 两个底面是圆形,大小相等 一个侧面是曲面 无数条
圆锥
(3)交流圆锥具有哪些特征?学生回答,教师课件配着演示。
①圆锥由几个面围成?
②圆锥的侧面有什么特点?底面呢?
③什么是圆锥的高?
(4)把自己圆锥上各部分名称指给同桌看。
(5)怎样测量圆锥的高呢?利用手中的工具尝试测量一下,教师巡视辅导。
指名上台演示,教师课件演示。
3. 比较圆柱和圆锥
问:圆柱和圆锥有什么相同点和不同点呢?
三、 巩固深化,拓展运用
1. 课本第19页“练一练”。
学生独立完成,指名口答,并说说理由。
2. 判断说理:
(1) 圆柱的高只有一条。( )
(2) 圆锥的高有无数条。( )
(3) 圆柱两个底面直径相等。( )
(4) 圆柱和圆锥都有一个曲面叫侧面。( )
3. 书本第20页第2题。学生独立完成,集体讲评。
教师讲解:从正面、侧面或上面观察物体,看到的图形画下来都应该是平面图形。
4. 操作题
(1) 拿一张长方形纸卷一卷,看能卷成什么形状?有几种卷法?
(2) 拿一张正方形纸卷一卷,卷成什么形状?
5. 书本第20页第5题
(1) 猜一猜,想一想:能得到什么形状?
(2) 转一转,看一看,验证猜想。
四、 课堂总结,梳理知识
这节课上你获得了哪些新知识呢?和同桌交流一下。
五、作业
圆柱和圆锥的认识教学反思
圆锥的认识和圆柱的认识在研究内容上有其相似之处。认识圆柱后我及时地引导学生进行回顾:“我们是从哪些方面对圆柱的特征进行研究的?”通过交流学生明白了对于圆柱是从面、直观图、高等几个方面进行研究的。我及时设问:“你打算从哪些方面来研究圆锥?”通过交流学生对学习的方法进行了有效地迁移,学习的积极性得到有效地激发。兴趣盎然地投入到观察、研究之中。对于圆锥,不同的同学有了不同的认识。然后,通过适时地交流和组织阅读课本,学生对于圆锥有了较好的认识。
圆的认识教案12
【教学目标】
1.认识圆的特征,初步学会画圆,发展空间观念。
2.在认识圆的过程中,感受研究的一般方法,享受思维的乐趣。
【教学过程】
师生问好。
一、情景中创造“圆” 师:同学们请看题目:
“小明参加奥林匹克寻宝活动,得到 一张纸条,纸条上面写的是:宝物距离左脚三米。”宝物可能在哪呢? 生思考
师:有想法,你的桌子上有张白纸,上面有个红点,你们找到了吗?
生:找到了
师:那个红点代表的是小明的左脚,如果用纸上的1厘米代表实际距离的1米的话,能 把你的想法在纸上表示出来吗?想,开始。学生动手实践,师巡视。
师:真佩服,真佩服,我们西安的小朋友真棒!会动脑子。除了你表示的那个点,还有其他可能吗? 生思考。
师:好,很多同学都想好了,我们来看屏幕。红点代表小明的左脚,[课件演示:在红点右侧找出一距离红点3米的点]刚才我看到,很多同学都找到了这个点,找到的同学举手。生纷纷举手。
师:除了这一点,刚才我看到,还有的同学找到了这一点。[课件演示:在红点左侧找出一个距离红点3米的点]还有这一点,这一点[课件演示:分别在红点上下的距离为3米的点]我看有的同学还画了这些斜点,是吗?还有其他的可能吗?[课件演示:越来越密,最后连成了圆]
师:想到圆的举手。哇,真佩服,刚才我看有的同学都画出圆了,是吗?看屏幕,这是什么?认识吗?
生:认识,圆
二、追问中初识“圆” 师:那宝物可能在哪里呢?
生:在圆的范围内,在圆的这条线上。
师:你刚才的说法很有意思,先说“在圆的范围内”,后来改成“在圆的这条线上”。如果在范围内,距离不够3米,如果在圆上,距离够3米。那你们怎么告诉小明呢?如果宝物在圆上,怎么表达告诉小明呢?
生:可以这样对小明说:“以你的左脚为圆心,画一个半径为3米的圆。在这个圆的周厂上取任意一点,这个地方也许就是埋宝物的地方”。
师:同意吗?真厉害。刚才她说到两个词,一个是以左脚为“圆心”还有一个是半径多少?[板书:圆心,半径] 生:3米
师:就用上这两个词,就很准确地表达出了圆的位置,对吧。如果只说以左脚为圆心,不说半径3米,告诉小明,宝物啊就在 以你左脚为圆心的圆上。行不行?
生:不行
师:为什么不行?
生:如果只告诉左脚是圆心的话,那圆可以无限延伸。就没法掌握圆的周长是多少。
师:那个圆可以无限延伸。我理解他的意思了,你理解了吗?
生:理解了。
师:也就是说圆的半径没定,圆的大小没定。对不对。
生:对
师:这样的话,可以画多少个圆,可以无限延伸,对不对。那如果不说“以左脚为圆心”行不行?
生:不行,那样圆的位置就可以无限延伸。
师:除了说“以左脚为圆心,半径为3米的圆上”还可以怎么说?生活中听说过吗?
生:也可以说直径是6米。师:同意吗?
生:同意。
师:可以说:以左脚为圆心,直径为——”
生:6米
师:对。这个“直径:也能表达圆的大小。[板书:直径]
师:为什么 宝物可能所在的位置会是一个圆呢?
生:因为在一个圆内,所有的 半径都相等。
师:哦,他说了这个。什么 宝物可能所在的位置会是一个圆呢?
生:因为以他的左脚为圆心,他可以随便走一圈,就变成圆了。
师:哦,可以随便走一圈。方向没有定,是吧。这也是另外一个角度看问题。刚才两个同学说的都很有道理,不过要很好的说明这个问题我们可以用”圆的特点“来说明。你觉得圆有特点呢?
生:我觉得圆有无数条半径,无数条直径。生:圆心到圆上任意一点的距离都是相等的。
师:我们说图形的特点的时候一般要和以前学过的图形作比较。一句话,有比较才有结论。[课件:三角形,正方形等]以前我们学过三角形,正方形等。我们以前说图形的时候往往从“边”和“角”两个角度来说明,那你看,从 边和角的角度来看,圆有什么特点呢?
生:它既没有棱也没有角。
师:同意吗?同意的请点点头,她说圆没有棱也没有角,对吗?
生:对
师:没有棱是什么意思?
生:没有棱是说它没有边,它不象正方形有4条边。师追问:那它是没有边吗?
生:不是,有边。师:有边,几条边? 生:1条。
师:那你们说圆的边和我们以前学过的图形有什么不同?
生:以前学过的图形的边是直线,而圆的边是曲线构成的。师:同意?
生:同意。
师:看来我们从角来看,圆是没有角的。从边上来看,圆有没有边?
生:有!
师:有,几条边?
生:一条边。
师:这是圆很特别的地方。其他图形,最起码有3条边,而圆呢?只有一条边。并且它的`边怎样?
生:是曲线的。
师:是曲线的。其他的是直线或者说是线段围成的。
师:圆,我们从边和角来看是这样的特点。我们的祖先墨子说:圆一中同长也[板书]知道这句话什么意思吗?一中指什么?
生:圆心
师:同长,什么同长?
生:半径
师:半径同长,有人说直径也同长。同意古人说的话吗?
生:同意。
师:“圆,一中同长也”。难道说正三角形,正四边形正五边行不是“一中同长”吗?
认为是的举手,认为不是的举手。为什么不是呢?
生:这些图形中心到角的距离比到边的距离要长一些。上前面指着说。师:这些图形是不是一中同长?
生:不是。
师,不是的理由就是:从这个中心到边上的点跟到顶点的点的距离就不一样。那有没有一样的?正三角形里有几条一样的?
生:3条。师:正方形呢?
生:4条。师:正五边行呢?
生:5条。师:正六边行?
生:6条。师指圆:
生:无数条。
师:无数条?[板书]为什么是无数条?
生:圆心到圆上的半径都相等。所以有无数条。师:我们解决的是什么问题?
生:我们解决的问题是相等的半径有无数条。师:为什么有无数条?
生:圆心到圆上的距离都相等。师:圆周上有多少个点?
生:无数个。
师:这些点和圆心连起来当然就有无数条,是吧。圆周上有无数点,请问:从这到这有多少个点?[指圆弧线]
生:无数个。
师:这些图形一中同长的条数是有限的,而圆从圆心到圆上的距离都是一样的。古人说的“圆,一中同长”你认同吗?
生:认同。
师:经过我们讨论更认同了,不过刚才有同学说圆是没有角的。圆只有1条边,边是曲线。究竟哪个更重要呢?我们来看[课件出示椭圆]这个图形是不是没有角的。是不是只有1条边,边是曲线。它是圆吗?它一中同长吗?所以说一中同长是圆最重要的特征。墨子的这一发现比西方早了1000多年,谁能学古人的样子读一读?
生读。
师:圆有什么特点?
生:一中同长。
师:我们来看小明的宝藏在什么范围?我们第2个问题解决完了吗?
三、画圆中感受“圆” 1从不圆中,感悟圆的画法。
师:孩子们,想自己画一个圆吗? 画圆用什么?
生:用圆规。师:古人说:没有规矩,不成方圆。大家看,规就是圆规、矩就是带着直角的尺。规是用来画圆的,矩是用来画方的。
师:既然大家都回会画?画一个半径为4厘米的圆
(生自己画圆)
师:画好了吗?
(展示学生的作品,学生此时的作品都不怎么标准)
师:从这些圆里,我们是否可以想象,它们是怎样创造出来的?
师:看来画圆并不是一件很容易的事,小组里交流一下,怎样画圆才能标准?(生小组交流)
师:大家交流完了,好了。那现在你们说一下是怎么画的?
生:用圆规
师:了解圆规的发展,现在圆规的优点在哪里?
师:用这样的圆规画圆,手必须拿着哪,圆规就不动了?
生:拿着圆规的头,不能捏着它的两条腿。
师:对,就是拿住圆规的头,而不能捏着它的两条腿。
*(课件出示:再画:一个直径是4厘米的圆)
生画,师巡视
师:哎呀,老师在巡视时,我发现你们画的较规范的圆,大小不一样,为什么?
生:这里要我们画的是直径4厘米的圆。
师:你知道什么是直径吗?顾名思义,它和半径是什么关系?
生:直径是半径的2倍。
师:订好距离,就是圆的半径。
师:孩子们,谁愿意上来画一画。这个机会老师留着了。
师:展示画圆,故意出现破绽一:没有“圆”上?破绽二:没有画完?
生:两脚之间距离变化了;粗细不均匀; 师:你们真仔细,我把汗都画出来了。2标上半径、直径。
师:学生标直径和半径;你说在画半径时特别注意什么?
生:在画半径时特别注意对齐圆的圆心,画完后表上字母r;
师:半径有两个端点,一个端点在(圆)上,另一个端点呢?
生:圆心;
师:再画一条直径;刚才他画的时候你注意到了吗?应该特别注意什么?那位戴眼镜的小伙子。生:一定得通过圆心。
师:直径用字母d表示,数学上就是这么规定的。d和r是什么关系?
生:2倍,d=2r。师:画圆是怎样画的? 师:先确定一条半径,也就是两脚之间的距离,然后确定一个圆心,再旋转一圈。为什么随手就能画出一个圆呢?
生:圆规画长是半径
师:为什么这么做呢?先确定圆心,半径长度。生:圆心到圆上的距离就不相等了
师:圆的特点:圆一中同长。知道圆的特点太重要了。
四、球场上解释“圆”
1.出示篮球场。
师:是什么?中间是什么?中间为什么是个圆?不知道篮球比赛是怎么开始的,不能回答这个问题,我们一起来看。
2.播放篮球开赛录像。师:为什么中间要是个圆呢?
生:刚开始比赛要往对方场地传球,这样中间画圆比较公平。师:队员在圆上,球在中心。圆一周同长,比较公平。
3.探讨大圆的画法。师:这个圆怎么画?
生:先找到圆心,两点间距离固定好,再画 师:大圆,再大,超大呢?没有圆规可以画?
生:用大拇指当圆心,用食指画 师:画大圆?
生:确定圆心半径再画。
师:这个大圆,没有圆规怎么画?
生自由交流
4.追问大圆的画法。
师:不是没有规矩不成方圆吗?怎么没有圆规也能画圆?
生:规矩不一定单独指圆规,指的应该是画图的工具。我们可以用不同的工具来画。
师:我们这句话还是对的。
五、回归情景突破“圆”
1.出示爱因斯坦的名言:“我没有什么特别的才能,不过喜欢寻根刨底地追究问题罢了。”
2.追问中提升认识。
师:一定这样吗?宝物一定是在以左脚为圆心,半径是3米的圆上吗?[课件:西瓜]宝物可能在哪里?
生:地下。
师:拿西瓜说事。我们就想到球了,球也是一中同长。圆和球有什么不同?
生:圆是平面图形,球是立体图形。
圆的认识教案13
教学目标:
1、使学生认识圆,掌握圆的特征,理解直径与半径的关系。
2、会使用工具画圆。
3、培养学生观察、分析、综合、概括及动手操作能力。
教学重点:圆的认识,通过动手操作,理解直径与半径的关系,认识圆的特征。
教学难点:画圆的方法,认识圆的特征。
教学过程:
一、复习。
1、我们以前学过的平面图行有哪些?这些图形都是用什么线围成的?简单说说这些图形的特征?
长方形正方形平行四边形三角形梯形
2、示圆片图形:圆是用什么线围成的?(圆是一种曲线图形)
举例:生活中有哪些圆形的物体?
二、认识圆的特征。
1、学生自己在准备好的纸上画一个圆,并动手剪下。
2、动手折一折。
(1)折过2次后,你发现了什么?(两折痕的交点叫做圆心,圆心一般用字母o表示)
(2)再折出另外两条折痕,看看圆心是否相同。
3、认识直径和半径。
(1)将折痕用铅笔画出来,比一比是否相等?
(2)观察这些线段的特征。(圆心和圆上任意一点的距离都相等)
(3)板书:通过圆心并且两端都在圆上的线段,叫做直径。连接圆心到圆上任意一点的线段,叫做半径。
4、讨论:
(1)什么叫半径?圆上是什么意思?画一画两条半径,量一量它们的长短,发现了什么?
(2)什么叫直径?过圆心是什么意思?量一量手上的圆的直径的长短,你发现了什么?
(3)小结:在同一个圆里,有无数条直径,且所有的直径都相等。
在同一个圆里,有无数条半径,且所有的半径都相等。
5、直径与半径的关系。
(1)学生独立量出自己手中圆的直径与半径的长度,看它们之间有什么关系?然后讨论测量结果,找出直径与半径的关系。
得出结论:在同一个圆里,
6、巩固练习:课本58“做一做”的第1-4题。
三、学习画圆。
1、介绍圆规的各部分名称及使用方法。
2、引导学生自学用圆规画圆,并小结出画圆的步骤和方法。
四、巩固练习。
1、画一个半径是2厘米的圆。再画一个直径是5厘米的圆。
2、判断,并说为什么。
(1)半径的长短决定圆的大小。()
(2)圆心决定圆的位置。()
(3)直径是半径的2倍。()
(4)圆的半径都相等。()
3、思考题:在操场如何画半径是5米的大圆?
五、布置作业。
教学反思:
在教授《圆的认识》后,有如下反思,希望在今后的教学过程中能扬长短,促进教学。
一、联系生活,体现生活数学。
数学来源于生活,并应用于生活。教师通过引导学生寻找身边的物体哪些是圆形的。课后引导学生探讨车轮为什么是圆形的,不但调动了学生的积极性,加深了学生对圆的认识,而且拉近了数学与生活的距离,使学生深刻体会到身边有数学,伸出手就能触摸到数学,从而对数学产生亲切感,增强学生对学习数学的兴趣和提高学生应用数学的能力。
二、自主探索,培养创新精神。
1、在教学中,学生是学习的主体,在本节课中给学生提供自主探索的机会,引导学生开展合作型的探究性活动,让学生在观察、实验、讨论、交流、合作学习中,理解新知识,使所有学生都能获得成功感,树立自信心。如教学圆心、直径、半径,不急于传授,通过引导学生动手操作折圆,发现圆中心的一点,比一比、量一量、画一画,发现圆的一些特征;通过观察、比较,自主看书,发现同圆中,所有半径都相等,所有直径也相等,半径是直径的一半,直径是半径的2倍,教师适时引导,使学生懂得归纳知识的一般方法,同时学会了观察、实验、操作、发现等学习方法,并伴随新知识的获得,体验到了成功的.快乐,增强了克服困难的勇气和毅力。
2、在画圆这个教学片段中我没有像以前一样一边示范,一边讲解圆的画法,我发现很多学生都有画圆的经验了,就借助学生已有的经验,让学生在自主探索中建构。在学生介绍画圆的经验时,我利用动态生成的资源教学,借助学生的实践操作,我很自然地解决了“画圆时,圆心决定圆的位置,圆规两脚张开的大小是圆的半径,圆的半径决定圆的大小”的问题,学生在民主的氛围中学会了圆的画法。
3.应用知识,体验价值。提问车轮为什么要做成圆的,车轴装在哪里?让学生充分发表意见后,教师机演示自制教具车轮,让学生再好奇,愉悦的氛围中明白了车轮做成圆的车就跑的既快又稳道理。这些生活化的问题,对学生既有挑战性又体现了学习的乐趣。正真体现了数学来源生活又服务生活。
不足之处:
1、在本节课画圆的部分,没有在黑板上示范圆的画法,因此并没有规范学生对圆的画法的认识,学生并没有一个直观的感觉,没有创设出一个理解的空间。、
2、本节课小组合作学习的实效性没有完全充分地发挥出来。
3、在尊重学生方面还应注意不能打消学生的积极性
4、圆与点、直线、圆的位置关系还不是很清楚、证明题中还不会找条件。
5、扇形的面积计算还不太熟练,有待于进一步巩固。
圆的认识教案14
设计教学目的:
1、掌握圆各部分名称以及圆的特征;会用圆规画圆。
2、借助动手操作活动,培养学生运用所学知识解决实际问题的能力。
3、渗透知识来源于实践、学习的目的在于应用的思想。
教学重、难点:
掌握圆各部分的名称及圆的特征。圆的画法的掌握。
教具准备:
多媒体课件、圆规、直尺等学具准备:各种不同的圆形实物、剪刀、彩笔、直尺、圆规、圆形、纸片等
教学主要过程:
一、结合实际、谈话引入新课。
谈话引入:今天非常高兴能和六(五)班同学一起来学习、研究一个数学问题。
我们以前已经初步认识了圆,你能找出生活中哪些物品的形状是圆的吗?(生举例师强调——指物品的表面)师:看来大家平时非常留心观察。课前请同学们画两个大小不同的圆,并把它们剪下来,你们准备好了吗?师:把它们举起来,大家互相看一看。
回想自己画圆、剪圆的过程,你能说说圆是什么样子的吗?(师一手拿一个圆)(圆是没有棱角的,边是弯的;圆的边是一条曲线。)师:同学们观察得真仔细。
圆的边是弯曲的,跟以前学的长方形、正方形的边是不同的。今天我们就来研究这种平面上的曲线图形。
(板书课题)
二、引导探究新知
1、导:圆里究竟藏有什么秘密呢?下面我们来做一个小实验。把你的圆对折,再对折,多折几次,把折痕画出来,看看你有什么发现,并把你的发现在小组里汇报。
最后看看谁的收获多。(1分钟)
2、学生动手操作,讨论交流。
几分钟后分别从圆心、半径、直径各方面纷纷展示汇报。(5分钟)师:你们组观察得真仔细!大家的发现可真不少,现在我们就把刚才的发现整理一下。
3、展示探究结果
。结合多媒体课件辅助,完整认识圆的特征(8分钟)谁来告诉老师,你有哪些新发现?那是什么原因呢?你怎样发现的?结合学生交流、汇报探究结果,及时引导梳理。
主要从圆的圆心、半径、直径、等方面来认识。这里特别要注意通过板书帮助学生进行新知的有目的的整理。
预设板书:
圆的认识——平面曲线图形圆心(o)圆中心一点确定圆的位置半径(r):线段连接圆心到圆上任意一点确定圆的大小长度都相等〈在同一个圆里〉直径(d)线段通过圆心两端都在圆上长度都相等〈在同一个圆里〉半径和直径的关系d=2r r=d/24、学习画圆(5分钟)你是如何画圆的?课件展示如何画圆。然后学生动手练习,并强调画圆时应该注意些什么。——揭示圆大小位置的确定学校要修建一个直径是20米的花坛,你能帮学校画出这个圆吗?生演示操作
三、应用拓展
1、基本练习
〈1〉投影出示找出下列圆的半径直径
〈2〉半径直径的相关计算
〈3〉概念的判断和识别
2、应用练习。
)〈1〉车轮为什么做成圆形的,车轴应安装在哪?如果车轮制成方形的、三角形的,我们坐上去会是什么感觉呢?结合课件演示
〈2〉你能用今天学习的圆的知识去解释一些生活现象吗(举行篝火晚会时,人们总是不知不觉会围成一个圆形,为什么?平静的湖面扔一小石子,会有什么变化?为什么?月饼为一般都做成圆形的,为什么?)看来生活中的很多现象,都蕴含着丰富的道理,需要我们不断地探索,来认识它,解释它、运用它。
〈3〉同学们学到现在,已经很累了,我们来轻松一下吧。老师给大家猜一个迷语。
有一个人在一片青草地上钉了一根木桩,用一根绳子拴了一只羊在那里。(利用电脑配上画面)先请同学们猜测一个字。
(很多学生都说可以猜“样”)再学生猜两个字的水果名,学生在启发下猜出草莓(草没的谐音)师:羊吃草的情况与今天学的知识有关吗?我们来看一看羊吃草的最大范围有多大好吗?(用电脑演示羊拉紧绳子旋转一周的.情况,让学生直观的看到原来羊能吃到的草的最大范围是一个圆,拴羊的绳子与这个圆有什么关系吗?(是这个圆的半径)钉在那儿的木桩是这个圆的什么呢?(是这个圆的圆心)如果要让这个羊吃草的范围更大一点可以怎么办?(把绳子放长一点,也就是把半径扩大)如果要让羊到另外一个地方去吃草,可怎么办?(可以把木桩移动一个地方,也就是移动圆心的位置),这说明圆的半径与圆心与圆有什么关系呢?(圆的半径决定了圆的大小,而圆的圆心可以决定圆的位置。)
四、总结全课(3分钟)
1、质疑(篮球是圆形吗?表示圆心、半径和直径的字母可以随意改变吗?)
2、这节课你都学会了什么?不管怎么说,老师觉得同学们的学习表现是不错的,所以我提议:我们一起伸出手划上一个圆满的句号。
(句号是圆形的)延伸:
1、用圆作画
2、谈谈我眼中的圆。
圆的认识教案15
教学内容:九年义务教育六年制小学数学第十一册第106-109页。
教学目的:1.使学生了解圆是一种曲线图形。
2.使学生理解和掌握圆的各部分名称及圆的特征。
3.会用圆规画园。
4.培养学生的观察比较、分析推理,抽象概括等能力。
教学重点:圆的各部分名称及圆的特征。
教学难点:圆的特征。
教具准备:多媒体课件一套、圆规等。
学具准备:圆形纸片、圆规、直尺等。
教学过程:
一、设疑揭题,明确目标
1.复习。
同学们,我们已经学过一些平面图形,你能从这辆自行车平面示意图中找出我们已学过的平面图形吗?
(课件显示由平面图形构成的自行车示意图,根据学生的回答,同步闪亮 )
2.设疑。
你们知道自行车架为什么要做成三角形?
(根据学生回答:三角形具有稳定性,课件闪亮自行车三角形的框架部分。)
而自行车的轮胎为什么要做成圆形的呢?
(课件闪动自行车的轮胎后圆跳出,师在黑板上贴上圆形纸片,然后学生试回答)
3.揭题。
大家现在知道的只是其中的一些表面原因,其实这里面具有一定的科学知识,你们想知道吗?学完了这节课,我们就会知道的。(板书课题)
4.量标。
同学们,看到课题你想知道些什么呢?
(根据生答,师概括板书:图形、名称、特征、画圆)
[评析:(1)上课伊始,以"自行车的轮胎为什么要做成圆的"为疑,只能引起学生用浮浅的知识来回答,怎样用科学的道理来解释呢?学生急于想知道,这样可激发学生探索知识的兴趣与热情。(2)量标教学,是高年级学生自主学习的必要环节,让学生根据课题提出自己所需学习的内容,充分发挥其自我探索的能力。]
二、自主探究,合作交流
(一)直观比较、了解概念。(圆)
圆跟我们已学过的平面图形有什么不一样呢?
(课件出示,先闪动围成三角形和四边形的线段,再将围成圆的曲线用红线走了一圈。根据学生的回答,师板书:圆是曲线图形)
你能举出日常生活中哪些物体上有圆吗?(生举例)
(二)操作引路,感知概念(名称、特征)
1.折圆。
请同学们拿出你们课前准备好的圆形纸片,象老师这样对折。打开,再换个方向对折、再打开,反复折几次,你可以发现什么?(有许多痕交于中间一点)
2.量折痕。
再请同学们用直尺量一量刚才折的每一条痕的长度,你又发现了什么?(折痕长度相等)
3.量点到圆上距离。
最后请同学们再用直尺量一量,中间这个点到圆任意一点的距离,你还可以发现什么?(距离也都相等)
[评析:通过学生的折和量,来发现感知圆里的知识,帮助学生形成表象,为学生探索圆各部分的名称,猜想圆的特征,起了很好的铺垫作用。同时在动手操作活动中,让学生参与了学习过程,使学生在知识的形成过程中发挥主体作用。]
(三)自学交流,理解名称。
1.自学课本,初知名称。
同学们通过刚才动手发现圆里的知识还真不少,数学家们把这些知识都规定为不同的名称,你们想知道吗?请同学们自学课本的第4-9小节。
2.交流消化,理解名称。
(1)圆里各部分的名称有哪些?
(根据学生的回答师板书:圆心、直径、半径)
(2)什么叫圆心?圆心就是我们刚才折圆时所发现的什么?
(3)数学家又是如何规定圆的直径的呢?
(随生答,媒体同步动画直径的过程,先后出示直径d及直径概念)
那么,直径就是我们刚才折圆时的什么?(折痕)
(4)什么叫半径?圆上任意一点是什么意思?(随生答,课件闪烁圆周上的许多点再动画出半径。)
半径就是我们在量圆时所发现的什么?
(5)(课件显示出圆的圆心、直径、半径的整体图及概念,学生齐读概念一遍)
3.练习。下面哪些是圆的半径或直径?为什么?
[评析:在学生经过操作,对圆的知识有了一定的感性认识的基础上,让学生自学课文,再通过互相交流,多媒体的演示,使学生逐步建立了完整的正确的概念。]
(四)猜想验证,概括特征。
1.分组讨论,进行猜想。
同学们,你能根据我们刚才折圆、量圆时所发现的,以及我们已学习的什么叫直径、半径来想一想、猜一猜,圆可能会有哪些特征呢?(学生分小组讨论)
2.交流讨论,提出猜想。
请各小组把讨论情况在全班交流一下。
(根据交流情况,师板书猜想内容)
3.各自验证,全班交流。
同学们真爱动脑筋,猜想了圆有这么多的特征。但是你们的猜想都对吗?你自己能不能想一个办法来验证一下,试试看。
(全班学生各自想法验证:有的折圆,有的量折痕,有的在圆中画直径、半径,有的量直径、半径,有的列表记录量的数据,有的嘴里在不停地唠叨着概念……)
请同学们把你验证的方法和得出的结果告诉大家。
4.媒体演示,加深理解。
(多媒体将学生验证的圆的特征运用了旋转、重合等声像并茂的手段,进行了动态演示)
5.学生概括,总结特征。
谁能把圆的特征用自己的语言来归纳概括一下。
(随生答,师板书:所有直径都相等,所有半径都相等,d=2,t=d/2)
这就是我们验证出来的圆的特征,同学们同意吗?
(异口同声:同意。一生提反对意见:这些特征必须在同一个圆里才能成立。)
哎呀,你真聪明,把大家容易疏忽的问题给提出来了,真了不起。(师边说边板书:在同一个圆里)
6.对照验证,完善猜想。那么,你们的猜想有问题吗?(生:有,必须强调在同一个圆里)其实,你们刚才的猜想与验证,都是在自己手中同一个圆里进行折圆,量圆的,那么你们猜想对所说的圆里,就是指自己手中的同一个圆里。(师在猜想内容的"圆里"前补上"同一个")
这样,你们的猜想内容与验证结果意思就怎么样?
(随生答,师在"猜想"与"验证"之间连线同时板书:正确)
7.练习,填空。
[评析:运用"猜想验证"的方法,引导学生借助操作过程与已学过的半径、直径对圆可能有哪些特征,进行了合理的猜想;通过小组讨论交流、相互补充,提高了学生分析推理能力;然后让学生自己想办法验证,使学生的求异思维得到发展;再通过多媒体的演示,最后让学生自己归纳概括出圆的特征,便是水到渠成了。]
(五)自我实践,学会画圆。
1.自学画法,实践画圆。
(学生结合课本108页圆的画法,边看边学会用圆规画圆)
2.学生自己介绍画圆步骤。
(随生介绍,师分步板书:定距、定点、旋转)
怎样定距?(学生边介绍边演示)这个圆规两脚之间的距离就是什么?(生:圆的半径)
在画圆时,你发现固定的.一点与旋转一周各是圆的什么?
3.(师揭下贴在黑板上的圆形纸片,在贴纸片的地方示范画圆,小结画圆步骤)
[评析;画圆是这节课的非重点内容,则通过学生自我实践便可掌握。教学时间分配强略得当。]
三、自练反馈,巩固新知
1.填空。
(1)圆是平面上的一种( )。
(2)左图圆内固定的一点O是这个圆的( );线段OB是这个圆的( ),用字母( )表示;线段AC叫做圆的( ),用字母( )表示。
(3)在同一个圆里,直径与半径的比是( )。
(4)把一个圆规的两脚张开4厘米,画一个圆,它的直径是( )。
2.判断。
(1)两端都在圆上的线段叫做直径。( )
(2)圆里有无数条半径,无数条直径。( )
(3)所有的半径都相等,所有的直径都相等。( )
(4)半径决定着圆的大小,圆心决定着圆的位置。( )
(5)画直径5厘米的圆,圆规两脚间的距离是2.5厘米。( )
(6)直径6厘米的圆比半径4厘米的圆大。( )
3.操作。
学会量没有圆心的圆的直径。(课本练习二十五第1题)
四、运用新知,质疑释疑
1.现在,大家一定能运用这节课所学的知识,解释一下"为什么车轮都要做成圆形,车轴应装在哪里?"
(多媒体放完车轮分别是正方形、椭圆形、圆形的行进动画后,给学生直观给予提示,学生各抒己见,直对中心。)
2.学了"圆的认识"这节课,你还想知道些什么?
(生甲:圆也有周长和面积吗?生乙:怎样在操场上画一个很大的圆?……)
圆的周长和面积以后会学到的。谁见过怎样在操场上画一个很大的圆?(学生互相释疑)
五、总结全课,储存新知
这节课你自己运用了哪些学习方法,学到了哪些知识?
六、学生作业,深化新知
1.课堂作业:练习二十五第3.4题。
2.课后实践:量自行车轮胎外直径。
[总评:本课是在该校"自主探究式"数学课堂教学模式的框架下设计的。按"设疑揭题,明确目标一一自主探究,合作交流--自练反馈,巩固新知--运用新知,质疑释疑一一总结全课,储存新知"的程序实施操作的。教学过程中,充分放手让学生参与知识的形成过程,让他们自己去发现、去猜想、去验证、去讨论、去合作……从而实行自主探究",以培养学生的创新精神和实践能力为重点,努力使学生成为真正的学习主人。]
【圆的认识教案】相关文章:
圆的认识教案11-09
圆的认识教案常用【15篇】03-28
圆的认识说课稿10-03
圆的认识教学反思04-09
《圆的认识》教学反思08-20
“圆的认识”教学设计10-27
《圆的认识》教学反思04-08
《圆的认识》数学教学设计12-17
《圆的认识》教学反思 15篇12-20
《圆的认识》教学设计范文(精选3篇)02-06