《圆柱的表面积》教学反思
作为一位优秀的老师,我们要在课堂教学中快速成长,我们可以把教学过程中的感悟记录在教学反思中,那么教学反思应该怎么写才合适呢?下面是小编整理的《圆柱的表面积》教学反思,欢迎大家分享。

《圆柱的表面积》教学反思1
无论是已知圆柱底面半径和高,或是已知底面直径、周长和高求表面积都必须经过七步计算(注:平方也算为一步)。这么烦琐的计算,对于学生而言是有一定难度的,且在列式中,还必须正确选用圆的周长和面积计算公式,因此解答圆柱体的表面积其实是对学生综合应用所学面积公式的一大考验。
为适当降低教学难度,我在学生初次接触圆柱体表面积一课时,将教学目标仅定位于能够掌握公式,并能正确求出圆柱体的表面积,而不涉及灵活解决实际问题的`练习(即不教学例4),整节课重在夯实基础。从列式情况来看,教学效果不错,可一到计算,问题还是频频凸显。特别是有关于∏计算,学生一定要认真计算才能得出正确结果,三位数乘三位数学生平时练习较少,所以极易计算出错。在此,只有适当加大计算指导力度及练习密度,提升作业正确率。
《圆柱的表面积》教学反思2
通过本节课的教学,使我深深地认识到同学们的学习兴趣浓厚,学习积极主动,课堂上他们动手操作,认真观察,独立思考,互相讨论,合作交流,终于发现了知识,领悟了知识,品尝到了成功的.喜悦,学生自始至终在自主学习中发展。数学来源于生活,生活中到处有数学。从学生的生活实际,创设数学问题,这是激发学生学习数学兴趣和调动学生积极性参与的有效方法。
在第一环节中,教师就创设了“饮料罐”情景,你想学什么?让学生自己提出问题,激发了学生创造的愿望。
第二环节中,让学生在熟悉的生活背景下,根据已掌握的数学知识大胆探索,培养了学生分析能力和创新意识。在课堂上多给学生发言展示的机会会极大地调动学生的潜在意识,使其情感上得到满足。
《圆柱的表面积》教学反思3
1、把握重点,突破难点,合理利用教材。
对于圆柱体侧面面积计算公式的推导,严格遵循主体性原则,让学生动手操作、观察、发现,促进知识的迁移,使学生轻松地理解掌握圆柱侧面面积的计算方法,较好地突破难点。
2、直观演示和实际操作相结合。
通过直观演示和实际操作,引导学生观察、思考和探索圆柱体表面积的计算方法,鼓励学生积极主动地获取新知,
3、让学生自主学习,探究圆柱的侧面积和表面积的计算方法。
让学生自主学习,对培养学生的学习兴趣和学习能力有较大的帮助,使学生在学习过程中获得数学知识,并感受学习的快乐与成功感。
4、讲解与练习相结合。
本节课,改变了传统的先讲后练的教学模式,做到讲、练结合,贯穿教学的始终,使练习随着讲解由易到难,层层深入。在练习表面积的实际应用时,又很自然地进行了“进一法”的教学,使讲、练,真正做到了有机结合,学生学习的知识是有效的、实用的,同时也激发了学生学习数学和运用解决实际问题的兴趣,培养了学生的应用意识。
5、使学生能正确计算圆柱的侧面积和表面积。
为了让学生能正确地计算圆柱体的表面积,我要求学生先用分部算式计算,并写清s侧=和s表=,以便学生分清自己每一个算式计算的是哪部分的面积。
6、发展学生空间观念,并能利用知识合理灵活地分析、解决实际问题。
在这方面的练习题中,学生往往对题意理解不够,不知道是计算哪些部分的`面积,通风管的材料,有不少学生加上两个底的面积。为了让学生发展空间想象能力,我提示学生在解决问题前,一定要弄清题意,并尽量回忆一上实物的结构,自己没有见过的,应通过日常应用知识来想一想、画一画,看看它应是个什么样了的,再作解答。学生中出现的共性问题,教师再集中讲一讲。这样一来,就大大地提高了学生灵活运用知识解决问题的能力。
总之,这节教学内容是本册教材中的一个重难点,如何能达到更好的教学效果,有待我们教师去探索、去研究适合学生心理接受的更好之法。
《圆柱的表面积》教学反思4
圆柱体的表面积计算是一个难点。本堂课中学生虽然很明确的知道求圆柱体的表面积是求两个底面积和一个侧面积的面积和。但在实施过程中有一定的困难,有写同学是因为对其中的公式或意义没有真正理解。不知道要求侧面积先求什么,求了圆底面周长又和圆的面积混淆,列式计算时漏洞百出,甚至还有一部分同学因为计算又导致前功尽弃。
接触到一些实际问题的时候,由于学生的生活经验和社会经验都比较浅薄,从而对一物体的认识不够,不能完全准确的来判断求的物体是几个面,分别是哪几个面,还有实际中求表面积时采用的近似法椰油一定的不理解,需要通过反复练习才能达到一定的程度。
[圆柱的侧面积和表面积]
沿着圆柱的一条母线把圆柱剪开后展开,圆柱的侧面就由曲面转化为平面,展开图是一个矩形,矩形的长等于圆柱底面的周长c,矩形的宽等于圆柱的高h.这个矩形的面积就是圆柱的侧面积.由此可知,圆柱的侧面积等于底面的周长乘以高,即
S圆柱侧=ch=2rh(r为圆柱底面的半径)
圆柱的侧面积与两个底面圆面积的和,就是圆柱的表面积(也叫全面积).即
S圆柱表=S圆柱侧+2S底=2r2
教学时,要把圆柱的侧面积和表面积区别开来.可用纸板做成圆柱模型,然后将侧面展开,导出计算圆柱侧面积和表面积的方法,并先概括成文字公式,再过渡到字母公式.
学生计算烟囱、水管、无盖桶、封闭桶罐等用料面积时,容易多算或少算底面积,灵活运用公式比较困难.可以多观察实物、模型,增加感性认识.也可以给出一些计算式子,要学生说明是求圆柱体的.哪几个面的面积.例如:S=2rh,是求( );S= 2r2,是求( ); S=2r2,是求( ).
《圆柱的侧面积和表面积》教学片段
在以往教学长方体、正方体的表面积时,常常为学生在学习表面积后的变式练习中,怎么都弄不清油桶、游泳池、粉刷教室到底缺哪个面而头疼。
我想,关于圆柱的表面积也会存在这样的问题吧。为了防患于未然,我想,是不是在新课的教学中就为这些情况作了一些铺垫呢?因此,在教学这一课时,我先引导学生复习了圆柱体的特征,然后设计了如下问题:
求铅笔涂漆部分的面积是求( )的面积;
压路机滚动一周压过多大路面是求( )的面积;
求一个水桶用多少材料是求( )的面积;
求汽油桶用多少铁皮是求( )的面积。
《圆柱的表面积》教学反思5
一、合理灵活地组织和利用教材。
“圆柱的表面积”这部分教学内容包括:圆柱的侧面积、表面积的计算,表面积在实际计算中的应用以及用进一步取近似值。教材共安排了三道例题,分两课时进行教学。教学时,我打破了传统的教学程序,将这些内容重新组织,合理灵活地利用教材在一课时内完成了两课时的教学任务。将侧面积计算方法的推导作为教学的难点来突破;将表面积的计算作为重点来教学;将表面积的实际应用作为重点来练习;将用进一法取近似值作为一个知识点在练习中理解和掌握。四者有机结合、相互联系,多而不乱。教学设计和安排既源于教材,又不同于教材。三道例题没有做专门的教学,但其指导思想和目的要求分别在练习过程中得以体现。整个一节课,增加容量但又学得轻松,极大提高了调堂教学效率。
二、较好地体现了教师主导与学生主体作用的统一。
本节课在教学上采用了引导、放手、引导的'方法,通过教师的“导”,鼓励学生积极、主动地探究新知。
1、直观演示和实际操作相结合
新课开始,教师通过圆柱教具直观演示,引导学生复习圆柱体的特征,进而理解圆柱表面积的意义。在教学侧面积的计算时,精心设疑:圆柱的侧面是个曲面,怎样计算它的面积呢?想一想,能否将这个曲面转化为我们学过的平面图形,从中思考和发现它的侧面积该怎样计算呢?在老师的启发下,学生以小组为单位,用圆柱形纸筒进行实际操作,最后探究出侧面积的计算方法。
2、讲练结合。
教学这节课,我改变了传统的先讲后练的教学模式,做到讲练结合贯穿教学的始终。而且使练习随着讲解由易到难,层层深入,一环紧扣一环。每一步练习都是下一步练习的基础。具体做法是:在学生理解了圆柱的表面积的意义(即:表面积=底面积×2+侧面积)以后,作为检查复习,我首先按从左到右的顺序依次出示三个圆柱体,并分别告诉条件:(单位:厘米)r=3d=4c=6.28,然后让学生练习求它们的底面积,并做好记录;在学生发现了圆柱侧面积的计算方法以后,仍以上面三个圆柱为主,从右向左依次给出三个圆柱的高:(单位:厘米)h=7h=6h=3,要求计算出这三个圆柱的侧面积,同样做好记录;在学生学会计算圆柱的底面积和侧面积以后,设疑:你会计算这三个圆柱的表面积吗?学生在充分练习铺垫的基础上,利用计算所得数据,合理自然地就计算出了三个圆柱的表面积。再练习表面积的实际应用时,又很自然进行了“进一法”的教学。使讲练真正做到了有机结合,学生学得轻松,练得有趣。
三、较好地培养学生的合作意识和实践能力。
1、培养了学生的合作意识。
在教学圆柱侧面积计算方法时,我没有拘泥于教材上把侧面转化为长方形这一思路,而是放手学生合作探究:能否将这个曲面转化为学过的平面图形?鼓励学生大胆猜想和实验,把圆柱形纸筒剪开,结果学生根据纸筒的特点和剪法分别将曲面转化成了长方形、正方形、平行四边形等平面图形。通过观察和思考,最终都探讨出了侧面积的计算方法。在组织学生合作学习中,较好地培养了学生的合作能力。
2、培养了学生的实践能力。
新课程提出:“使学生初步学会运用所学的数学知识和方法解决一些简单的实际问题。”所以在课的最后,我设计了一个操作练习:小组合作测量计算制作所带的圆柱形实物的用料面积。根据练习要求,组织学生在讨论的基础上动手测量,最后算出结果。学生在动手实践中做到了有目的、有计划、有步骤。并且根据实物的特点想出了很多测量所需数据的方法,既合理又灵活。在合作学习中不仅达到了学以致用的目的,而且培养了实践能力,体现了新课程标准的要求。
四、较好地利用现代化的教学手段。
本节课合理地利用了多媒体教学技术。在讲练过程中,动态逐一出示三个圆柱及条件,并闪烁所求底面和侧面。将直接的告诉条件和问题变成动态的先后展示,不仅做到思路清、方向明,而且极大地调动了学生学习的积极性。另外,多媒体将生活中的油漆桶、水桶、羽毛球筒等实物“搬”到课堂,加深了学生对表面积实际计算意义的直观认识和理解,使学生感受到了数学与现实生活的密切联系。
《圆柱的表面积》教学反思6
我今天执教的内容是《圆柱的表面积》,圆柱的表面积,重点在于进行推导圆柱的侧面积计算公式,圆柱的表面积计算公式。在本节课的教学中,我从始至终贯穿着生本理念,以教学内容问题化为抓手,体现在教学中以学生小组活动为主体,教师为主导,训练思维为主线这样的原则,让学生在交流中学,在玩中学中课后,听取了孙主任和王主任的评课,又联系课堂教学,我进行了深刻地反思。
一、小组合作学习的组织有序
这节课,我以“圆柱的侧面积计算公式”和“圆柱的表面积计算公式”为核心问题进行教学。整节课,组织学生围绕这两个核心问题进行交流、讨论,汇报和交流。但合作学习小组,每位同学都参与进行学习活动,特别是个别差生,在优秀同学的指导下倾听有进步。还有教师在小组合作学习当中,加入学习小组,指导和帮助学习小组进行学习。
二、学生操作的缺失
整节课的基础应该是建立在学生动手操作的基础之上,再进行观察发现讨论交流问题,但由于课前布置的小练习已经做过。缺失了在课堂上操作展示这一块,直接进行讨论,造成个别中等和偏下的学生,没有和实例结合,造成理解思维困难。另外,在教学例3时,可以做一个模型帮助学生进行理解。
三、教师指导还需到位
由于这节课,整合学校课题,教学内容问题化,我选择进行小组合作学习,但教师,如何组织学生进行学生,面对学生交流的答案的'不确定性,如何引导组织学生进行解决,给我们提出了更高的要求,所以在课堂教学中,一些事先没有预计到的情况出现时,没有很好的去解决,造成了学生学习当中的疑惑。这也给教师提出了更高的要求。另外,在小组合作学习中,作为教师,又应该如何去指导学生展开学习,都是我们需要注意的地方。
《圆柱的表面积》教学反思7
圆柱的表面积教学,关键在于通过圆柱的侧面展开图推导出圆柱的侧面积公式。因此本节课的教学,从始至终贯穿着以学生为主体,教师为主导,训练思维为主线的原则,在各个环节中让学生自己去解决,让学生在动手操作、合作探究中学习。
一、把握重点,突破难点,合理利用教材。
圆柱表面积这节课教学内容主要包括:圆柱的侧面积、表面积的计算,以及用进一法取近似值。教材安排了三道例题,但在教学中,我将侧面积计算方法的 推导作为教学难点来突破,将表面积的计算作为重点来教学,将用近一法取似值作为一个知识点。再结合学生的实际,巧妙的把他们联系成一个整体,做到收中 有放,放中有收。
二、直观演示和实践操作相结合。
在侧面积和表面积的计算环节中,我首先让学生看一看、摸一摸,自己观察、发现,形成圆柱表面积的.表象。认识到圆柱的表面积等于圆柱的侧面积和两个底面面积 之和。然后,在突破侧面积的计算方法这个难点时,让学生自己展开圆柱体模型,观察到侧面展开是一个长方形。长方形的长就是圆柱的底面周长,长方形的宽就是 圆柱的高,从而根据长方形的面积公式自然推导出了圆柱侧面积的计算公式,然后我又启发学生:圆柱的侧面展开图除了长方形,还可能是什么图形?发现、创新是 每个孩子的天性,在基本知识理解掌握之后,他们对于书本上没有的方式方法有更高的兴奋点与关注点。这时有的学生会说,沿高展开后还可能得到正方形,这是一 种特殊现象。借此我又让学生自己进行操作、尝试,得出了与书上不一样的结果。这样做,不仅启发了他们的思维,又培养了他们的创新意识。
三、习题设计。
在练习题的设计中,遵循了从易到难的原则,在形式、难度、灵活性上都有体现。判断题有利于学生对知识的理解;动手测量并计算圆柱体实物表面积的题目,锻炼了学生对知识的实际应用能力,使学生感受到数学与现实生活的联系。
当然,在这节课的教学中,还存在着一些不足。如:学生对圆周长和面积的计算不够熟练;小组合作的初衷也是好的,但在实际教学中却没有达到预期的要求。在以后的教学中,我还应该多吸取教训,弥补自己的不足,用更好的教学方法进行数学知识的教学。
《圆柱的表面积》教学反思8
数学课程标准指出,有效的数学活动不能依赖模仿和记忆,动手实践,自主探索,合作交流是学生学习数学的重要方式。而且,要倡导学生主动参与,乐于探究,培养他们获取新知识的能力。本节课一开始,我没有直接告诉学生圆柱的特征,而是让他们自己观察、触摸,感受什么是圆柱的.表面积。接着我和同学们一起动手实践,操作,将自制的圆柱体模型展开,让学生明白圆柱体的表面积就是两个圆和一个长方形。通过观察,学生明白长方形的面积就是圆柱的侧面的面积。接着小组合作探讨圆柱侧面积的计算方法,在这里让我惊讶的是,有一个孩子一边演示一边总结,长方形的长和宽都可以做圆柱体的底面周长。这是我没有想到的,最后孩子们通过小组合作推导出圆柱体表面积的计算方法,思路清晰,算理透彻,真正成了学习的主人。
可以说,在这节课的学习过程中,我不是让学生被动地接受教材,也不是自己推导出现成的结论让孩子们去识记,去背诵,而是通过操作实践等活动,让学生经历了知识的“再创造”过程。由于学生经历了不断的“再创造”的过程,积极主动的从事数学思考、建构数学知识,所以整堂课的学习气氛和教学效果取得了双丰收,这样,孩子们怎能对数学不动心呢?
《圆柱的表面积》教学反思9
练习课是小学数学教学中最难驾驶的课型之一。它需要教师对教材、学生的实际了如指掌,这样才能恰到好处地选择练习时机,确定练习内容,安排课堂结构。因而本节课的练习的设计围绕如下四点进行:
1、这一节是圆柱表面积计算的练习课。学生对刚学的知识还不够熟练,往往容易将侧面积公式,表面积公式,圆周长公式,圆面积公式等混淆。针对学生的这个问题,我首先让学生回顾圆柱表面积计算的方法,进一步让学生明白求圆柱表面积的不同方法,再通过填表让学生得到巩固。
2、在实际生活中,所求的面积要根据具体问题来灵活确定,因而试设计了让学生根据具体问题来确定所求问题是求哪些面的面积这一环节,从而使学生在具体问题中理解解答问题的方法。在这一环节中,还安排了让学生小组讨论:解答这些问题的注意点,使学生在交流和讨论的过程中明白解答这些问题时要注意以下三点:
(1)要注意所求问题是求哪些面的面积;
(2)要注意统一单位;
(3)要弄清楚采取哪种方法取近似值。
3、将圆柱采取不同的分法其表面积的变化不同,因而要让学生理解其变化规律。在这节课上,我设计了让学生通过讨论来理解变化规律的环节,这一环节的设计为学生解答有关表面积变化的问题打下了牢固的基础。
4、在练习中,除了有单纯计算圆柱侧面积和表面积的'问题外,更多的是一些生活中的实际问题,通过这样的综合练习使学生解题能力得以提高。
本节练习课,在让学生进行基本练习的基础上,通过小组交流、讨论,使学生进一步步认识了圆柱的形体特征,使得学生利用公式进行熟练的计算。大部分的问题都是引导学生自己开动脑筋,积极思考,获取知识,这种做法,对学生掌握基础知识,领悟数学思想和方法,提高数学能力起到了积极的促进作用。
《圆柱的表面积》教学反思10
1.教学要引起学生的问题意识。
“问题是数学的心脏。”问题意识是一种探索意识,是创造的起点。学生有了问题,才会思考和探索,有探索才会有发展。所以我让学生去发现计算圆柱的表面积在课堂中和生活中的区别,使他们意识到课堂中的数学是经过提炼总结出来的。用数学知识解决问题,如算出茶叶筒至少需要多少平方厘米的铁皮,由此引起学生的认知冲突,调整原有的认知结构,促进探究向深层次推进。
2.教学要激发学生的过程意识。
数学学习的`本质是“再创造”。数学的学习过程不是让学生被动的吸收教材和教师给出的现成结论,而是由一个学生亲自参与的、生动活泼的、主动的和富有个性的过程。这节课围绕“制作一个圆柱”展开活动,探究的脉络清楚。学生经历了“实践——失败——总结——再实践——成功”的探究过程。如:学生在失败后说:“我们忽视了侧面与底面的关系,计算时我们都知道圆柱的底面周长就是侧面展开后长方形的长、正方形的边长或者平行四边形的底。但制作时就忘记了这些知识。”“学生在经历了失败才引起了思考,在对与错、应该与不应该的斗争中撞击智慧的火花,课堂的生命力由此显现。在总结之后的再一次实践中,学生的创新意识和创造能力体现出来了,这种情不自禁的创造来源于感悟和体验。只有经历了这样的感悟、体验的过程,才能得到能力的锤炼,智慧的升华。
《圆柱的表面积》教学反思11
圆柱体的表面积计算是一个难点。本堂课中学生虽然很明确的知道求圆柱体的表面积是求两个底面积和一个侧面积的面积和。但在实施过程中有一定的困难,有写同学是因为对其中的公式或意义没有真正理解。不知道要求侧面积先求什么,求了圆底面周长又和圆的面积混淆,列式计算时漏洞百出,甚至还有一部分同学因为计算又导致前功尽弃。
接触到一些实际问题的时候,由于学生的生活经验和社会经验都比较浅薄,从而对一物体的认识不够,不能完全准确的来判断求的物体是几个面,分别是哪几个面,还有实际中求表面积时采用的近似法椰油一定的不理解,需要通过反复练习才能达到一定的程度。
圆柱的侧面积和表面积:
沿着圆柱的一条母线把圆柱剪开后展开,圆柱的侧面就由曲面转化为平面,展开图是一个矩形,矩形的长等于圆柱底面的周长c,矩形的宽等于圆柱的高h。这个矩形的面积就是圆柱的侧面积。由此可知,圆柱的侧面积等于底面的周长乘以高,即
S圆柱侧=ch=2πrh(r为圆柱底面的半径),圆柱的`侧面积与两个底面圆面积的和,就是圆柱的表面积(也叫全面积)。即S圆柱表=S圆柱侧+2S底=2πrh+2πr2。
教学时,要把圆柱的侧面积和表面积区别开来。可用纸板做成圆柱模型,然后将侧面展开,导出计算圆柱侧面积和表面积的方法,并先概括成文字公式,再过渡到字母公式。
学生计算烟囱、水管、无盖桶、封闭桶罐等用料面积时,容易多算或少算底面积,灵活运用公式比较困难。可以多观察实物、模型,增加感性认识。也可以给出一些计算式子,要学生说明是求圆柱体的哪几个面的面积。例如:S=2πrh,是求( );S= 2πrh+πr2,是求( ); S=2πrh+2πr2,是求( )。
《圆柱的侧面积和表面积》教学片段:
在以往教学长方体、正方体的表面积时,常常为学生在学习表面积后的变式练习中,怎么都弄不清油桶、游泳池、粉刷教室到底缺哪个面而头疼。
我想,关于圆柱的表面积也会存在这样的问题吧。为了防患于未然,我想,是不是在新课的教学中就为这些情况作了一些铺垫呢?因此,在教学这一课时,我先引导学生复习了圆柱体的特征,然后设计了如下问题:
1、求铅笔涂漆部分的面积是求( )的面积。
2、压路机滚动一周压过多大路面是求( )的面积。
3、求一个水桶用多少材料是求( )的面积。
4、求汽油桶用多少铁皮是求( )的面积。
《圆柱的表面积》教学反思12
在课后总结质疑时,学生一共提了两个问题:
问题一:计算圆柱的侧面积时,算不算接头处重叠的面积。
问题二:计算无盖塑料盒的面积时,算不算里面的面积。
我们不难发现,学生关注的这两个问题源于两个方面:一、虽然在课堂上老师始终注意了表达的科学和严密,在提到实物时不忘加上“圆柱形的”***,但学生对于圆柱形的实物和数学上的圆柱没有概念上的区别。老师到底有没有必要去向学生大谈、特谈两者的区别,我也心里没底;二、我们同时也可以注意到,学生关注的这两个问题都是作业中或考试中经常出现的,而且学生都是难以把握的,他们因为害怕自己理解错误,所以才会在课堂上提出。而他们之所以害怕自己理解错误,实质是关心分数,可见由于片面的`重视分数,以至学生在课堂上淡薄
其它数学问题的思考。
养成良好的习惯。同时我也反思,有序书写是在我的反复追问下,才有一个学生提到的,可见在平时的教学中对知识之外的情感、态度和价值观关注不够。
《圆柱的表面积》教学反思13
在教学圆柱的表面积时,由于学生已经学习了长方体和正方体的表面积,而且上节课已经制作过圆柱模型,所以学生对表面积含义的理解并不困难。因此在教学圆柱的表面积时,我让学生通过讨论交流并观察圆柱展开图,很快就理解了圆柱的表面积是由一个曲面和两个完全相同的圆围成的。但在计算表面积时,侧面积的计算方法是本课中的教学难点。学生往往不能将圆柱的底面半径及圆柱的高,和圆柱侧面的长宽建立起联系,因此在教学时我加强了学生的操作活动,让学生预先在展开后的图形中标明圆柱的底面和侧面,以便把展开后的每个面与展开前的.位置对应起来但在计算时却出现周长与面积混淆,所以我及时帮助学生理清解题思路,让学生明确计算侧面积的直接条件是底面周长和高;圆柱的底面是圆形,计算圆的面积的直接条件是半径。而且要能熟练区分圆的周长和面积的计算公式。尽管如此学生在解决实际问题时还是问题很多,因为步骤较多,计算粗心不规范也影响了解题速度和准确率,所以一节课下来,课堂容量不大,效率较低,看来在这个单元的教学中要结合学生实际再改进教学方法,提高课堂教学效率。
《圆柱的表面积》教学反思14
圆柱的表面积由侧面积加上两个底面积组成,学生在做题过程中往往不能顺利地找出解决问题的关键,一道题,往往不会直接给出解决问题的所有必要条件,在给出一些条件的同时,往往隐藏了一些,老师在教学的过程中,就是要引导学去”刨“出隐藏着的一些信息,例如一个圆柱体知道底面周长和高,怎样求出表面积,要求表面积,关键是求出两个底面积,知道底面周长求底面积,两个量之间的类似点在于都要用到圆周率,知道底面周长,可求出直径或半径,学生的思维症结在于不会联系起来思考,为了突破这一难题,我作了多方面的努力,取得一些效果,但仍有一些人不明白,为此,我认为,应该把圆柱的各个部分再次拆开来,重点在干剖析圆的面积与周长之间的关 当我一个人的时候,手里拿着手机,浏览一些网页,看看电视上的新闻,打打篮球,看看自己喜欢的'书籍… 当我一个人的时候,睡睡懒觉,洗洗衣服,洗洗澡,呆呆地看大山,看看天空… 当我一个人的时候,给远方的母亲打个电话,和朋友在电话上互相调侃,在网上看看朋友、同学的动态… 当我一个人的时候,我能够让自己的心灵插上翅膀,自由的飞翔,当我一个人的时候,我总能收获几许温馨与甜蜜,当我一个人的时候,也许,远方的你,也正在一个人享受着那难得的宁静与幸福。
面积与周长之间的相同点在于,都要用到圆周率和半径去计算,知道周长可求半径,知道半径可求面积,在这里,我对学生的引导不到位,这是我的不足之处。
《圆柱的表面积》教学反思15
1、重学生学习的过程。传统中的教学是教师直接出示圆柱的表面积计算公式让学生进行死记硬背,然后套公式计算。这是只重结果,不重过程的现象。这节课,学生初步了解了圆柱的表面是由两个相同的`底面和一个侧面构成的,计算圆柱底面积就是计算圆面积。我在学生初步理解圆柱表面积的含义后,重点安排学生进行圆柱侧面积计算方法的探索。学生通过剪、卷、滚等一系列活动探索出圆柱的侧面是一个长方形,从而推导出圆柱侧面积计算公式。
2、学生成为有效学习者。有效地复习了圆的面积计算方法,有效地掌握了圆的表面积计算方法
【《圆柱的表面积》教学反思】相关文章:
《圆柱的表面积》教学反思01-27
圆柱的表面积教学反思11-22
《圆柱的表面积》教学反思12-23
数学课《圆柱的表面积》教学反思12-27
《圆柱的表面积》教学设计06-14
《圆柱的表面积》说课稿10-06
《圆柱的体积》教学反思12-08
圆柱的认识教学反思11-29
《圆柱的认识》教学反思02-14
圆柱的体积教学反思04-05