当前位置:范文网>教学资料>教案>有理数教案

有理数教案

时间:2024-11-15 13:28:40 教案 我要投稿

有理数教案

  作为一位优秀的人民教师,往往需要进行教案编写工作,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。来参考自己需要的教案吧!下面是小编帮大家整理的有理数教案,欢迎大家分享。

有理数教案

有理数教案1

  教学目标:

  1、知识与技能:理解有理数加法的运算律,能熟练地运用运算律简化有理数加法的运算,能灵活运用有理数的加法解决简单实际问题。

  2、过程与方法:经过有理数加法运算律的探索过程,了解加法的运算律,能用运算律简化运算。

  重点、难点:

  1、重点:运算律的理解及合理、灵活的运用。

  2、难点:合理运用运算律。

  教学过程:

  一、创设情景,导入新课

  1、叙述有理数的加法法则。

  2、有理数加法与小学里学过的'数的加法有什么区别和联系?

  答:进行有理数加法运算,先要根据具体情况正确地选用法则,确定和的符号,这与小学里学过的数的加法是不同的;而计算和的绝对值,用的是小学里学过的加法或减法运算。

  二、合作交流,解读探究

  1、计算下列各题,并说明是根据哪一条运算法则?

  (1)(—9.18)+6.18;

(2)6.18+(—9.18);

(3)(—2.37)+(—4.63)

  2、计算下列各题:

  (1)+(—4);

(2)8+;

  (3)+(—11);

(4)(—7)+;

  (5)+(+27);

(6)(—22)+。

  通过上面练习,引导学生得出:

  交换律两个有理数相加,交换加数的位置,和不变。

  用代数式表示上面一段话:

  a+b=b+a

  运算律式子中的字母a,b表示任意的一个有理数,可以是正数,也可以是负数或者零。在同一个式子中,同一个字母表示同一个数。

  结合律三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。

  用代数式表示上面一段话:

  (a+b)+c=a+(b+c)

  这里a,b,c表示任意三个有理数。

  根据加法交换律和结合律可以推出:三个以上的有理数相加,可以任意交换加数的位置,也可以先把其中的几个数相加。

  三、应用迁移,巩固提高

  例(P22例3)计算:

  (1)33+(—2)+7+(—8)

  (2)4.375+(—82)+(—4.375)

  引导学生发现,在本例中,把正数与负数分别结合在一起再相加,有相反数的先把相反数相加;能凑整的先凑整;有分母相同的,先把同分母的数相加,计算就比较简便。

  本例先由学生在笔记本上解答,然后教师根据学生解答情况指定几名学生板演,并引导学生发现,简化加法运算一般是三种方法:首先消去互为相反数的两数(其和为0),同号结合或凑整数。

  例2(P23例4)

  教师通过启发,由学生列出算式,再让学生思考,如何应用运算律,使计算简便。第一问可以让学生自已作行程示意图帮助理解,注意第一问和第二问的区别。

  练习课本P23练习:1、2

  四、总结反思

  本节课你有哪些收获?

  五、作业

  1、课本P27习题1.4A组第3、4题

  2、课本P28习题1.4B组第12题

有理数教案2

  一、 知识要点

  本章的主要内容可以概括为有理数的概念与有理数的运算两部分。有理数的概念可以利用数轴来认识、理解,同时,利用数轴又可以把这些概念串在一起。有理数的运算是全章的重点。在具体运算时,要注意四个方面,一是运算法则,二是运算律,三是运算顺序,四是近似计算。

  基础知识:

  1、大于0的数叫做正数。

  2、在正数前面加上负号-的数叫做负数。

  3、0既不是正数也不是负数。

  4、有理数(rational number):正整数、负 整数、0、正分数、负分数都可以写 成分数的形式,这样的数称为有理数。

  5、数轴(number axis):通常,用一条直线上的点表示数,这条直线叫做数轴。

  数轴满足以下要求:

  (1) 在直线上任取一个点表示数0,这个点叫做原点(origin);

  (2) 通常规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方向;

  (3) 选取适当的长度为单位长度。

  6、相反数(opposite number):绝对值相等,只有负号不同的两个数叫做互为相反数。

  7、绝对值(absolute value)一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值。记做|a|。

  由绝对值的定义可得:|a-b|表示数轴上a点到b点的距离。

  一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.

  正数大于0,0大于负数,正数大于负数;两个负数,绝对值大的反而小。

  8、有理数加法法则

  (1)同号两数相加,取相同的符号,并把绝对值相加。

  (2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0.

  (3)一个数同0相加,仍得这个数。

  加法交换律:有理数的加法中,两个数相加,交换加数的位置,和不变。表达式:a+b=b+a。

  加法结合律:有理数的加法中,三个数相加,先把前两个数相加或者先把后两个数 相加,和不变。

  表达式:(a+b)+c=a+(b+c)

  9、有理数减法法则

  减去一个数,等于加这个数的相反数。表达式:a-b=a+(-b)

  10、有理数乘法法则

  两数相乘,同号得正,异号得负,并把绝对值相乘。

  任何数同0相乘,都得0.

  乘法交换律:一般地,有理数乘法中,两个数相乘,交换因数的位置,积相等。表达式:ab=ba

  乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。表达式:(ab)c=a(bc)

  乘法分配律:一般地,一个数同两个的和相乘,等于把这个数分别同这两个数相乘,再把积相加。

  表达式:a(b+c)=ab+ac

  11、倒数

  1除以一个数(零除外)的商,叫做这个数的倒数。如果两个数互为倒数,那么这两个数的积等于1。

  12、有理数除法法则:两数相除,同号得负,异号得正,并把绝对值相除。0除以任何一个不等于0的数,都得0.

  13、有理数的乘方:求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂(power)。an中,a叫做底数(base number),n叫做指数(exponent)。

  根据有理数的乘法法则可以得出:负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何正整数次幂都是0。

  14、有理数的混合运算顺序

  (1)先乘方,再乘除,最后加减的顺序进行;

  (2)同级运算,从左到右进行;

  (3)如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。

  15、科学技术法:把一个大于10的数表示成a﹡10n的形式(其中a是整数数位只有一位的数(即0

  16、近似数(approximate number):

  17、有理数可以写成m/n(m、n是整数,n0)的形式。另一方面,形如m/n(m、n是整数,n0)的数都是有理数。所以有理数可以用m/n(m、n是整数,n0)表示。

  拓展知识:

  1、 数集:把一些数放 在一起,就组成一个数的集合,简称数集。

  一、(1) 所有有理数组成的数集叫做有理数集;

  二、(2) 所有的整数组成的数集叫做整数集。

  2、 任何有理数 都可以用数轴上的一个点来表示,体现了数形结合的数学思想。

  3、 根据绝对值的几何意义知道:|a|0,即对任何有理数a,它的绝对值是非负数。

  4、 比较两个有理数大小的方法有:

  (1) 根据有理数在数轴上对应的点的位置直接比较;

  (2) 根据规定进行比较:两个正数;正数与零;负数与零;正数与负数;两个负数,体现了分类讨论的数学思想;

  (3) 做差法:a-ba

  (4) 做商法:a/b1,bab.

  二、 基础训练

  选择题

  1、下列运算中正确的是( ).

  A. a2a3=a6 B. =2 C. |(3--3 D. 32=-9

  2、下列各判断句中错误的是( )

  A.数轴上原点的位置可以任意选定

  B. 数轴上与原点的距离等于 个单位的点有两个

  C.与原点距离等于-2的点应当用原点左边第2个单位的点来表示

  D.数轴上无论怎样靠近的两个表示有理数的点之间,一定还存在着表示有理数的点。

  3、 、 是有理数,若 且 ,下列说法 正确的是( )

  A. 一定是正数 B. 一定是负数 C. 一定是正数 D. 一定是负数

  4、两数相加,如果比每个加数都小,那么这两个数是( )

  A.同为正数 B.同为负数 C.一个正数,一个负数 D.0和一个负数

  5、两个非零有理数的和为零,则它们的商是()

  A.0 B.-1 C.+1 D.不能确定

  6、一个数和它的倒数相等,则这个数是( )

  A.1 B.-1 C. 1 D. 1和0

  7、如果|a|=-a,下列成立的是( )

  A.a0 B.a0 C.a0或a=0 D.a0或a=0

  8、(-2)11+(-2)10的值是( )

  A.-2 B.(-2)21 C.0 D.-210

  9、已知4个矿泉水空瓶可以换矿泉水一瓶,现有16个矿泉水空瓶,若不交钱,最多可以喝矿泉水( )

  A. 3瓶 B. 4瓶 C. 5瓶 D. 6瓶

  10、在下列说法中,正确的个数是( )

  ⑴任何一个有理数都可以用数轴上的一个点来表示

  ⑵数轴上的每一个点都表示一个有理数

  ⑶任何有理数的绝对值都不可能是负数

  ⑷每个有理数都有相反数

  A、1 B、2 C、3 D、4

  11、如果一个数的相反数比它本身 大,那么这个数为( )

  A、正数 B、负数

  C、整数 D、不等于零的有理数

  12、下列说法正确的是( )

  A、几个有理数相乘,当因数有奇数个时,积为负;

  B、几个有理数相乘,当正因数有奇数个时,积为负;

  C、几个有理数相乘,当负因数有奇数个时,积为负;

  D、几个有理数相乘,当积为负数时,负因数有奇数个;

  填空题

  1、在有理数-7, ,-(-1.43), ,0, ,-1.7321中,是整数的有_____________是负分数的有_______________。

  2、一般地,设a是一个正数,则数轴上表示数a的点在原点的____边,与原点的距离是____个单位长度;表示数-a的`点在原点的____边,与原点的距离是____个单位长度。

  3、如果一个数是6位整数,用科学记数法表示它时,10的指数是_____;用科学记数法表示一个n位整数,其中10的指数是___________.

  4、实数a、b、c在数轴上的位置如图:化简|a-b|+|b-c|-|c-a|.

  5、绝对值大于1而小于4的整数有_____________________________________,其和为___________.

  6、若a、b互为相反数,c、d互为倒数,则(a+b)3-3(cd)4=________.

  7、1-2+3-4+5-6++20xx-2002的值是____________.

  8、若(a-1)2+|b+2|=0,那么a+b=_____________________.

  9、平方等于它本身的有理数是___________,立方等于它本身的有理数是__ ___________.

  10、用四舍五入法把3.1415926精确到千分位是 ,用科学记数法表示302400,应记为 ,近似数3.0 精确到 位。

  11、正数a的绝对值为__ ________;负数b的绝对值为________

  12、甲乙两数的和为-23.4,乙数为-8.1,甲比乙大

  13、在数轴上表示两个数, 的数总比 的大。(用左边右边填空)

  14、数轴上原点右边4.8厘米处的点表示的有理数是32,那么,数轴左边18厘米处的点表示的有理数是____________。

  三、强化训练

  1、计算:1+2+3++20xx+2003=__________.

  2、已知: 若 (a,b均为整数)则a+b=

  3、观察下列等式,你会发现什么规律: , , ,。。。请将你发现的规律用只含一个字母n (n为正整数)的等式表示出来

  4、已知 ,则 ___________

  5、已知 是整数, 是一个偶数,则a是 (奇,偶)

  6、已知1+2+3++31+32+33==1733,求1-3+2-6+3-9+4-12++31-93+32-96+33-99的值。

  7、在数1,2,3,,50前添+或-,并求它们的和,所得结果的最小非负数是多少?请列出算式解答。

  8、如果有理数a,b满足∣ab-2∣+(1-b)2=0,试求 ++ 的值。

  9、如果规定符号*的意义是a*b=ab/(a+b),求2*(-3)*4的值。

  10、已知|x+1|=4,(y+2)2=4,求x+y的值。

  11、投资股票是一种很重要的投资方式,但股市的风云变化又牵动了股民的心。

  例:某股民在上星期五买进某种股票500股,每股60元,下表是本周每日该股票的涨跌情况(单位:元):

  星期 一 二 三 四 五

  每股涨跌 +4 +4.5 -1 -2.5 -6

  第1章(1) 星期三收盘时,每股是多少元?

  第2章(2) 本周内最高价是每股多少元?最低价是多少元?

  第3章(3) 已知买进股票是付了1.5的手续费,卖出时需付成交额1.5的手续费和1的交易费,如果在星期五收盘前将全部股票一次性地卖出,他的收益情况如何?

  第4章(4) 以买进的股价为0点,用折线统计图表示本周该股的股价情况。

  四、竞赛训练

  1、 最小的非负有理数与最大的非正有理数的和是

  2、 乘积 =

  3、 比较大小:A= ,B= ,则A B

  4、 满足不等式104105的整数A的个数是x104+1,则x的值是( )

  A、9B、8C、7D、6

  5、 最小的一位数的质数与最小的两位数的质数的积是()

  A、11 B、22 C、26 D、33

  6、 比较

  7、 计算:

  8、 计算:(2+1)(22+1)(24+1)(28+1)(2 16+1)(232+1).xkb1.com

  9、 计算:

  10、计算

  11、计算1+3+5+7++1997+1999的值

  12、计算 1+5+52+53++599+5100的值.

  13、有理数 均不为0,且 设 试求代数式 20xx之值。

  14、已知a、b、c为实数,且 ,求 的值。

  15、已知: 。

  16、解方程组 。

  17、若a、b、c为整数,且 ,求 的值。

有理数教案3

  一、课题2.4有理数的减法

  二、教学目标

  1.使学生掌握有理数减法法则并熟练地进行有理数减法运算;

  2.培养学生观察、分析、归纳及运算能力.

  三、教学重点

  有理数减法法则

  四、教学难点

  有理数减法法则

  五、教学用具

  三角尺、小黑板、小卡片

  六、课时安排

  1课时

  七、教学过程

  (一)、从学生原有认知结构提出问题

  1.计算:

  (1)(-2.6)+(-3.1);(2)(-2)+3;(3)8+(-3);(4)(-6.9)+0.

  2.化简下列各式符号:

  (1)-(-6);(2)-(+8);(3)+(-7);

  (4)+(+4);(5)-(-9);(6)-(+3).

  3.填空:

  (1)______+6=20;(2)20+______=17;

  (3)______+(-2)=-20;(4)(-20)+______=-6.

  在第3题中,已知一个加数与和,求另一个加数,在小学里就是减法运算.如______+6=20,就是求20-6=14,所以14+6=20.那么(2),(3),(4)是怎样算出来的?这就是有理数的减法,减法是加法的逆运算.

  (二)、师生共同研究有理数减法法则

  问题1(1)(+10)-(+3)=______;

  (2)(+10)+(-3)=______.

  教师引导学生发现:两式的结果相同,(更多内容请访问首页:)即(+10)-(+3)=(+10)+(-3).

  教师启发学生思考:减法可以转化成加法运算.但是,这是否具有一般性?问题2(1)(+10)-(-3)=______;

  (2)(+10)+(+3)=______.

  对于(1),根据减法意义,这就是要求一个数,使它与-3相加等于+10,这个数是多少?

  (2)的结果是多少?

  于是,(+10)-(-3)=(+10)+(+3).

  至此,教师引导学生归纳出有理数减法法则:

  减去一个数,等于加上这个数的相反数.

  教师强调运用此法则时注意“两变”:一是减法变为加法;二是减数变为其相反数.减数变号(减法============加法)

  (三)、运用举例变式练习

  例1计算:

  (1)(-3)-(-5);(2)0-7.

  例2计算:

  (1)18-(-3);(2)(-3)-18;(3)(-18)-(-3);(4)(-3)-(-18).

  通过计算上面一组有理数减法算式,引导学生发现:

  在小学里学习的减法,差总是小于被减数,在有理数减法中,差不一定小于被减数了,只要减去一个负数,其差就大于被减数.

  例3世界上最高的山峰是珠穆朗玛峰,其海拔高度大约为是8848米,吐鲁番盆地的.海拔高度大约是-155米,两处高度相差多少米?

  阅读课本63页例3

  (四)、小结

  1.教师指导学生阅读教材后强调指出:

  由于把减数变为它的相反数,从而减法转化为加法.有理数的加法和减法,当引进负数后就可以统一用加法来解决.

  2.不论减数是正数、负数或是零,都符合有理数减法法则.在使用法则时,注意被减数是永不变的.

  (五)、课堂练习

  1.计算:

  (1)-8-8;(2)(-8)-(-8);(3)8-(-8);(4)8-8;

  2.计算:

  (1)16-47;(2)28-(-74);(3)(-37)-(-85);(4)(-54)-14;

  (5)123-190;(6)(-112)-98;(7)(-131)-(-129);(8)341-249.

  3.计算:

  (1)1.6-(-2.5);(2)0.4-1;(3)(-3.8)-7;

  (4)(-5.9)-(-6.1);

  (5)(-2.3)-3.6;(6)4.2-5.7;(7)(-3.71)-(-1.45);(8)6.18-(-2.93).

  利用有理数减法解下列问题

  4.世界最高峰是珠穆朗玛峰,海拔高度是8848m,陆上最低处是位于亚洲西部的死海湖,湖面海拔高度是-392m.两处高度相差多少?

  八、布置课后作业:

  课本习题2.6知识技能的2、3、4和问题解决1

  九、板书设计

  2.5有理数的减法

  (一)知识回顾(三)例题解析(五)课堂小结

  例1、例2、例3

  (二)观察发现(四)课堂练习练习设计

  十、课后反思

有理数教案4

  教学目标

  1.知识与技能

  使学生会使用计算器进行有理数的加减运算.

  2.过程与方法

  尝试从不同角度寻求解决问题的方法,并能有效地解决问题.

  3.情感、态度与价值观

  有克服困难和运用知识解决问题的成功体验.

  教学重点难点

  重点:记清计算器中常用功能键的用法,多进行实际操作,逐步熟悉计算器的用法.

  难点:准确地用计算器进行加减运算.

  教与学互动设计

  观察体验 大家看这样一个算式:-15.13+4.85+(-7.69)-(-13.38)要计算出它的值,你能有什么方法吗?

  引导 使用计算器、电子计算器,简称计算器,具有运算快,操作简便,体积小,功能多等特点,既可帮助我们进行各种复杂的.数学计算,还可以帮助我们理解数学概念,有时计算器还可以编程序或绘制各种图形.在信息高速发展的时代,它已成为人们广泛使用的计算工具。

有理数教案5

  教学目标

  1、知识与技能:

  (1)有理数加法的运算律。

  (2)有理数加法在实际中的应用。

  2、过程与方法:

  (1)经历探索有理数加法运算律的过程,理解有理数的加法运算律。

  (2)利用运算律进行适当的推理训练,逐步培养学生的'逻辑思维能力

  3、情感态度与价值观:

  (1)学生通过交流、归纳、总结有理数加法的运算律,体会新旧知识的联系。

  (2)通过运用有理数加法法则解决实际问题,来增强学生的应用意识。

  重点有理数加法的运算律。

  难点运用加法运算律简化运算

  教学过程

  一、创设情景我们以前学过加法交换律、结合律,在有理数的加法中它们还适用吗?计算 30+(-20),(-20)+30。

  两次所得的和相同吗?换几个加数再试试。

  计算:-7+2 (-10)+(-5)

  二、探究新知

  1、填空

  (1)4+(-8)=____, (-8)+4=_____所以4+(-8)____ (-8)+4

  (2)(-9)+(-6)=____,(-6)+(-9)=___所以(-9)+(-6)____(-6)+(-9)于是可得a+b=_______

  2、

  (1)[2+(-3)]+(-8)=_______ 2+[(-3)+(-8)]=_______

  (2) (-5)+[7+(-2)]=______ [(-5)+7]+(-2)=____________于是可得(a+b)+c=________

有理数教案6

  目标:

  1、知识与技能

  使学生理解有理数乘法的意义,掌握有理数的乘法法则,能熟练地进行有理数的乘法运算。

  2、过程与方法

  经历探索有理数乘法法则的过程,理解有理数乘法法则,发展观察、探究、合情推理等能力,会进行有理数和乘法运算。

  重点、难点:

  1、重点:有理数乘法法则。

  2、难点:有理数乘法意义的理解,确定有理数乘法积的符号。

  过程:

  一、创设情景,导入新

  1、由前面的学习我们知道,正数的加减法可以扩充到有理数的.加减法,那么乘法是可也可以扩充呢?

  乘法是加法的特殊运算,例如5+5+5=5×3,那么请思考:

  (-5)+(-5)+(-5)与(-5)×3是否有相同的结果呢?本节我们就探究这个问题。

  3、在一条由西向东的笔直的马路上,取一点O,以向东的路程为正,则向西的路程为负,如果小玫从点O出发,以5千米的向西行走,那么经过3小时,她走了多远?

  二、合作交流,解读探究

  1、小学学过的乘法的意义是什么?

  乘法的分配律:a×(b+c)=a×b+a×c

  如果两个数的和为0,那么这两个数 互为相反数 。

  2、由前面的问题3,根据小学学过的乘法意义,小玫向西一共走了 (5×3)千米,即(-5)×3=-(5×3)

  3、学生活动:计算3×(-5)+3×5,注意运用简便运算

  通过计算表明3×(-5)与3×5互为相反数,从而有

  3×(-5)=-(3×5),由此看出,3×(-5)得负数,并且把绝对值3与5相乘。

  类似的,(-5)×(-3)+(-5)×3=(-5)×[(-3)+3]=0

  由此看出(-5)×(-3)得正数,并且把绝对值5与3相乘。

  4、提出:从以上的运算中,你能总结出有理数的乘法法则吗?

  鼓励学生自己归纳,并用自己的语舞衫歌扇,并与同伴交流。

  在学生猜测、归纳、交流的过程中及时引导、肯定

  两数相乘,同号得正,异号得负,绝对值相乘。

  任何数与0相乘,积仍为0

  (板书)有理数乘法法则:

  三、应用迁移,巩固提高

  1、计算

  (-5)×(-4) 2×(-3.5) × (-0.75)×0

  (1)学生根据乘法法则,在练习本上完成。指定四位同学到黑板演习。

  (2)教师:要求学生明确算理,学生做练习时,教师巡视,及时引导。

  2、计算下列各题

  ① (-4)×5×(-0.25) ② ×( )×(-2)

  ③ ×( )×0×( )

  指定三名同学在黑板上做,使学生明确,做有理数的乘法时,要先确定积的符号,再求出积的绝对值。

  教师提出问题:几个有理数相乘时,因数都不为0时,积是多少?

  学生小结后,教师归纳:

  几个不为0的有理数相乘,积的符号由负因数的符号决定,负因数有奇数个时,积为负;负因数有偶数个时,积为正;只要有一个因数为0,则积为0

  练习:本P31练习

  四、总结反思(学生先小结)

  1、有理数乘法法则

  2、有理数乘法的一般步骤是:

  (1)确定积的符号; (2)把绝对值相乘。

  五、作业:P39习题1.5 A组 1、2

有理数教案7

  有理数的乘法教案

  学习目标:

  1、理解有理数的运算法则;能根据有理数乘法运算法则进行有理的简单运算

  2、经历探索有理数乘法法则过程,发展观察、归纳、猜想、验证能力。

  3、培养语言表达能力。调动学习积极性,培养学习数学的兴趣。

  学习重点:有理数乘法

  学习难点:法则推导

  教学方法:引导、探究、归纳与练习相结合

  教学过程

  一、学前准备

  计算:

  (1)(一2)十(一2)

  (2)(一2)十(一2)十(一2)

  (3)(一2)十(一2)十(一2)十(一2)

  (4)(一2)十(一2)十(一2)十(一2)十(一2)

  猜想下列各式的值:

  (一2)×2(一2)×3

  (一2)×4(一2)×5

  二、探究新知

  1、自学有理数乘法中不同的形式,完成教科书中29~30页的填空。

  2、观察以上各式,结合对问题的研究,请同学们回答:

  (1)正数乘以正数积为__________数,(2)正数乘以负数积为__________数,

  (3)负数乘以正数积为__________数,(4)负数乘以负数积为__________数。

  提出问题:一个数和零相乘如何解释呢?

  《1.4.1有理数的乘法》同步练习含解析

  1、若有理数a,b满足a+b<0,ab<0,则()

  A、a,b都是正数

  B、a,b都是负数

  C、a,b中一个正数,一个负数,且正数的绝对值大于负数的绝对值

  D、a,b中一个正数,一个负数,且负数的绝对值大于正数的绝对值

  5、若a+b<0,ab<0,则()

  A、a>0,b>0

  B、a<0,b<0

  C、a,b两数一正一负,且正数的绝对值大于负数的绝对值

  D、a,b两数一正一负,且负数的绝对值大于正数的绝对值于0

  《1.4.1.2有理数的乘法运算律》课时练习含答案

  2、大于—3且小于4的所有整数的积为()

  A、—12 B、12 C、0 D、—144

  2、3.125×(—23)—3.125×77=3.125×(—23—77)=3.125×(—100)=—312.5,这个运算运用了()

  A、加法结合律

  B、乘法结合律

  C、分配律

  D、分配律的.逆用

  3、下列运算过程有错误的个数是()

  ①×2=3—4×2

  ②—4×(—7)×(—125)=—(4×125×7)

  ③9×15=×15=150—

  ④[3×(—25)]×(—2)=3×[(—25)×(—2)]=3×50

  A、1 B、2 C、3 D、4

  4、绝对值不大于2 015的所有整数的积是。

  5、在—6,—5,—1,3,4,7中任取三个数相乘,所得的积最小是,最大是。

  6、计算(—8)×(—2)+(—1)×(—8)—(—3)×(—8)的结果为。

  7、计算(1—2)×(2—3)×(3—4)×…×(2 014—2 015)×(2 015—2 016)的结果是。

有理数教案8

  一、教学目标

  ㈠知识与技能

  1.理解掌握有理数的减法法则

  2.会进行有理数的减法运算

  ㈡过程与方法

  1.通过把减法运算转化为加法运算,向学生渗透转化思想

  2.通过有理数减法法则的推导,发展学生的逻辑思维能力

  3.通过有理数的减法运算,培养学生的运算能力

  ㈢情感态度与价值感

  通过揭示有理数的减法法则,渗透事物间普遍联系、相互转化的辨证唯物主义思想

  二、学法引导

  1.教学方法:尽量引导学生分析、归纳总结,以学生为主体,师生共同参与教学活动。

  2.学生学法:探索新知归纳结论练习巩固

  三、重、难点与关键

  1.重点:有理数减法法则和运算

  2.难点:有理数减法法则的推导

  3.关键:正确完成减法到加法的转化

  四、师生互动活动设计

  教师提出实际问题,学生积极参与探索新知,教师出示练习题,学生以多种方式讨论解决。

  五、教学过程

  ㈠创设情境,引入新课

  1、计算(口答)

  ⑴;⑵-3+(-7)

  ⑶-10+3;⑷10+(-3)

  2、由实物投影显示课本第21页中的画面,假设这是淮南冬季里的某个周六,白天的最高气温是3℃,夜晚的最低气温是-3℃,这一天的'最高气温比最低气温高多少?

  引导学生观察:

  生:3℃比-3℃高6℃

  师:能不能列出算式计算呢?

  生:3-(-3)

  师:如何计算呢?

  总结:这就是我们今天要学的内容.(引入新课,板书课题)

  ㈡探索新知,讲授新课

  1、师:大家知道减法是与加法相反的运算,计算3-(-3),就是要求出一个数χ,使χ与-3的和等于3,那什么数与-3的和等于3呢?

  生:6+(-3)=3

  师:很好!由此可知3-(-3)=6

  师:计算:3+(+3)得多少呢?

  生:3+(+3)=6

  师:让学生观察两式结果,由此得到

  3-(-3)=3+(+3)

  师:通过上述题,同学们观察减法是否可以转化为加法计算呢?

  生:可以

  师:是如何转化的呢?

  生:减去一个负数(-3),等于加上它的相反数(+3)

  2、换几个数再试一试,计算下列各式:

  ⑴0-(-3)=0+(+3)=

  ⑵-5-(-3)=-5+(+3)=

  ⑶9-8=9+(-8)=

  引导学生完成答题,并提问:通过上述的讨论,你能得出什么结论?

  归纳得出:有理数的减法可以转化为加法来进行,“相反数“是转化的桥梁。

  (投影显示或板书)有理数减法法则:

  减去一个数,等于加上这个数的相反数。

  用式子表示为:a-b=a+(-b)

  强调注意:减法在运算时有2个要素发生了变化

  1、减加

  2、数相反数

  3、例题讲解:(出示投影)

  例1、计算下列各题

  ⑴9-(-5)⑵(-3)-1

有理数教案9

  教材分析:

  为体现新课标的要求,减少运算的繁琐,增加学生探究创新能力的培养,混合计算的步骤锐减,增加学生喜闻乐见的“二十四”点游戏。

  教学目标;

  [知识与技能]

  1.掌握有理数混合运算法则,并能进行有理数的混合运算的计算。

  2.经历“二十四”点游戏,培养学生的探究能力

  教学重点:有理数混合运算法则。

  教学难点:培养探索思维方式。

  教学流程:运算法则→混合运算→探索思维。

  教学准备:多媒体

  教学活动过程设计:

  一、生活应用引入:

  从学生喜爱的“开心辞典”中王小丫做节目的图片入手引学生进入学习兴趣

  [师]我们已学过哪种运算?

  [生]乘方、乘、除、加、减五种;复习各种运算的法则;

  例计算:

  ① ②(教师板书)

  ③ ④(学生计算)

  二、混合运算举例。

  1.(生口答)下列计算错在哪里?应如何改正?

  (1)74-22÷70=70÷70=1

  (2)(-112)2-23=114 -6 = -434

  (3)23-6÷3×13 =6-6÷1=0

  2.计算:(学生上台做,教师讲评)

  (1)(-6)2×(23 - 12)-23;(2)56 ÷23 - 13 ×(-6)2+32

  解:(1)(-6)2×(23 -12)-23=36×16 -8=6-8=-2。

  (2)56 ÷23-13 ×(-6)2+32

  =56 ×32-13 ×36+9。

  =54-12+9=-74

  三、合作学习1

  请看实例:

  如图:一圆形花坛的半径为3m,中间雕塑的底面是边长为1.2m的正方形。你能用算式表示该花坛的关际种花面积吗?这个算式有哪几种运算?应怎样计算?这个花坛的实际种化面积是多少?

  [生]列出算式3.14×32-1.22

  包括:乘方、乘、减三种运算

  [师]原式=3.14×9-1.44

  =28.26-1.44=26.82(m2)

  [师]请同学们说说有理数的混合运算的法则

  (生相互补充、师归纳)

  一般地,有理数混合运算的'法则是:

  先算乘方,再算乘除,最后算加减。如有括号,先进行括号里的运算。

  四、合作学习2

  例2:如图,半径是10cm,高为30cm的圆柱形水桶中装满了水,小明先将桶中的水倒满2个底面半径为3cm,高为6cm的圆柱形杯子,再把剩下的水倒入长、宽、高分别为50cm,30cm和20cm的长方体容器内,长方体容器内水的高度大约是多少cm(π取3,容器的厚度不计)?

  分析:如下图所示

  解:水桶内水的体积为π×102×30cm3,倒满2个杯子后,剩下的水的体积为

  (π×102×30-2×π×32×6)cm3

  (π×102×30-2×π×32×6)÷(50×30)

  =(9000-324) ÷1500 = 8676÷1500≈6(cm)

  答:容器内水的高度大约为6cm。

  三、分组探索(见ppt)

  下面请同学来玩“24点”游戏

  从一副扑克牌(去掉大、小王)中,任意抽取4张,根据牌面上的数字进行混合运算(每张牌只能用一次)使得运算结果可能为24或—24,其中红色扑克牌代表负数,黑色扑克牌代表正数,j、q、k分别代表11、12、13。

  (1)甲同学抽到了,a、8、7、3,他运用下列算式凑成24,=24。

  (2)乙同学抽到了,q、q、-3、a,他能凑成24或-24吗?=24。

  (3)丙同学抽到了,a、2、2、3,他能凑成24或-24吗?=24.

  (4)某同学如抽到下列一组牌6、5、3、a,你帮她设计一下算式使之能凑成24或-24。或-12×3-12×(-1)=-24

  (5)老师抽到下列四张牌,1、-2、2、3,你认为能凑成24或-24吗?

  (6)老师抽到下列四张牌,9、2、4、10,你认为能凑成24吗?

  试一试,你自编两组可凑成24或-24的牌,请邻座同学帮你设计算式。

  四、作业:课本第54页,作业题。

  教学反思:

  对于有理数混合运算,关键要把握好两点,运算次序和符号,不必让学生训练太繁琐、太复杂的计算,而多应该增加探索计算题(编不同的“二十四”点题就很好)。

有理数教案10

  教学目标:

  1、使学生掌握有理数加法的运算律,并能运用加法运算律简化运算。

  2、培养学生观察、比较、归纳及运算能力。

  重点:有理数加法运算律及其运用。

  重点:灵活运用运算律

  教学过程:

  一、创设情境,引入新课

  1、小学时已学过的加法运算律有哪几条?

  2、猜一猜:在有理数的加法中,这两条运算律仍然适用吗?

  3、(1)计算30+(-20)=__________=______,-20+30=___________=_____;

  (2)[8+(-5)]+(-4)=_______=______, 8+[(-5)+(-4)]=_______=______。

  二、讲授新课

  教师:你会用文字表述加法的两条运算律吗?你会用字母表示加法的`这两条运算律吗?

  (学生回答省略)

  师生共同归纳:加法交换律:两个数相加,交换加数的位置,和不变。 即:a+b=b+a

  加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。即(a+b)+c=a+(b+c)

  讲解例3

  教师:例3中是怎样使计算简化的?这样做的根据是什么?(请两位同学起来回答)

  三、巩固知识

  教师:例4中用了两种方法,比较两种解法,哪种方法比较好?解法2中使用了哪些运算律?

  师生共同得出:解法2比较好,因为它的运算量比较小。解法2中使用了加法交换律和加法结合律。

  四、总结

  本节课主要学习有理数加法运算律及其运用,主要用到的思想方法是类比思想,需要注意的是:有理数的加法运算律与小学学习的运算律相同,运用加法运算律的目的为了简化运算。解题技巧是将正数分别相加,再把负数分别相加,然后再把它们的和相加。

  五、布置作业

有理数教案11

  三维目标

  一、知识与技能

  (1)能确定多个因数相乘时,积的符号,并能用法则进行多个因数的乘积运算。

  (2)能利用计算器进行有理数的乘法运算。

  二、过程与方法

  经历探索几个不为0的数相乘,积的符号问题的过程,发展观察、归纳验证等能力。

  三、情感态度与价值观

  培养学生主动探索,积极思考的学习兴趣。

  教学重、难点与关键

  1.重点:能用法则进行多个因数的乘积运算。

  2.难点:积的符号的确定。

  3.关键:让学生观察实例,发现规律。

  教具准备

  投影仪。

  四、 教学过程

  1.请叙述有理数的乘法法则。

  2.计算:(1)│-5│(-2); (2)(-) (3)0(-99.9)。

  五、新授

  1.多个有理数相乘,可以把它们按顺序依次相乘。

  例如:计算:1(-1)(-7)=-(-7)=-2(-7)=14;

  又如:(+2)[(-78)]=(+2)(-26)=-52.

  我们知道计算有理数的乘法,关键是确定积的符号。

  观察:下列各式的积是正的还是负的?

  (1)234 (2)234(-4)

  (3)2(-3)(-4)(4)(-2)(-3)(-4)(-5)。

  易得出:(1)、(3)式积为负,(2)、(4)式积为正,积的符号与负因数的个数有关。

  教师问:几个不是0的数相乘,积的符号与负因数的个数之间有什么关系?

  学生完成思考后,教师指出:几个不是0的数相乘,积的符号由负因数的个数决定,与正因数的.个数无关,当负因数的个数为负数时,积为负数;当负因数的个数为偶数时,积为正数。

  2.多个不是0的有理数相乘,先由负因数的个数确定积的符号再求各个绝对值的积。

有理数教案12

  教学目标

  1、理解掌握有理数的减法法则,会将有理数的减法运算转化为加法运算;

  2、通过把减法运算转化为加法运算,向学生渗透转化思想,通过有理数的减法运算,培养学生的运算能力。

  3、通过揭示有理数的减法法则,渗透事物间普遍联系、相互转化的辩证唯物主义思想。

  教学建议

  (一) 重点、难点分析

  本节重点是运用有理数的减法法则熟练进行减法运算。解有理数减法的计算题需严格掌握两个步骤:首先将减法运算转化为加法运算,然后依据有理数加法法则确定所求结果的符号和绝对值。理解有理数的减法法则是难点,突破的关键是转化,变减为加。学习中要注意体会:小学遇到的小数减大数不会减的问题解决了,小数减大数的差是负数,在有理数范围内,减法总可以实施。

  (二)知识结构

  (三)教法建议

  1、教师指导学生阅读教材后强调指出:由于把减数变为它的相反数,从而减法转化为加法。有理数的加法和减法,当引进负数后就可以统一用加法来解决。

  2、不论减数是正数、负数或是零,都符合有理数减法法则。在使用法则时,注意被减数是永不变的。

  3、因为任何减法运算都可以统一成加法运算,所以我们没有必要再规定几个带有减法的运算律,这样有利于知识的巩固和记忆。

  4、注意引入负数后,小的数减去大的数就可以进行了,其差可用负数表示。 教学设计示例

  有理数的减法

  一、素质教育目标

  (一)知识教学点

  1、理解掌握有理数的减法法则。

  2、会进行有理数的减法运算。

  (二)能力训练点

  1、通过把减法运算转化为加法运算,向学生渗透转化思想。

  2、通过有理数减法法则的推导,发展学生的逻辑思维能力。

  3、通过有理数的减法运算,培养学生的运算能力。

  (三)德育渗透点

  通过揭示有理数的减法法则,渗透事物间普遍联系、相互转化的辩证唯物主义思想。

  (四)美育渗透点

  在小学算术里减法不能永远实施,学习了本节课知道减法在有理数范围内可以永远实施,体现了知识体系的完整美。

  二、学法引导

  1、教学方法:教师尽量引导学生分析、归纳总结,以学生为主体,师生共同参与教学活动。

  2、学生学法:探索新知→归纳结论→练习巩固。

  三、重点、难点、疑点及解决办法

  1、重点:有理数减法法则和运算。

  2、难点:有理数减法法则的推导。

  四、课时安排

  1课时

  五、教具学具准备

  电脑、投影仪、自制胶片。

  六、师生互动活动设计

  教师提出实际问题,学生积极参与探索新知,教师出示练习题,学生以多种方式讨论解决。

  七、教学步骤

  (一)创设情境,引入新课

  1、计算(口答)(1); (2)-3+(-7);

  (3)-10+(+3); (4)+10+(-3)。

  2、由实物投影显示课本第42页本章引言中的画面,这是北京冬季里的一天,白天的最高气温是10℃,夜晚的最低气温是-5℃。这一天的最高气温比最低气温高多少?

  教师引导学生观察:

  生:10℃比-5℃高15℃。

  师:能不能列出算式计算呢?

  生:10-(-5)。

  师:如何计算呢?

  教师总结:这就是我们今天要学的内容。(引入新课,板书课题)

  教法说明1题既复习巩固有理数加法法则,同时为进行有理数减法运算打基础。2题是一个具体实例,教师创设问题情境,激发学生的认知兴趣,把具体实例抽象成数学问题,从而点明本节课课题—有理数的减法。

  (二)探索新知,讲授新课

  1、师:大家知道10-3=7。谁能把10-3=7这个式子中的性质符号补出来呢?

  生:(+10)-(+3)=+7。

  师:计算:(+10)+(-3)得多少呢?

  生:(+10)+(-3)=+7。

  师:让学生观察两式结果,由此得到

  师:通过上述题,同学们观察减法是否可以转化为加法计算呢?生:可以。

  师:是如何转化的呢?

  生:减去一个正数(+3),等于加上它的相反数(-3)。

  教法说明

  教师发挥主导作用,注重学生的参与意识,充分发展学生的思维能力,让学生通过尝试,自己认识减法可以转化为加法计算。

  2、再看一题,计算(-10)-(-3)。

  教师启发:要解决这个问题,根据有理数减法的意义,这就是要求一个数使它与(-3)相加会得到-10,那么这个数是谁呢?

  生:-7即:(-7)+(-3)=-10,所以(-10)-(-3)=-7。教师给另外一个问题:计算(-10)+(+3)。

  生:(-10)+(+3)=-7。

  教师引导、学生观察上述两题结果,由此得到:

  教师进一步引导学生观察(2)式;你能得到什么结论呢?

  生:减去一个负数(-3)等于加上它的相反数(+3)。

  教师总结:由(1)、(2)两式可以看出减法运算可以转化成加法运算。

  教法说明

  由于学生刚刚接触有理数减法运算难度较大,为面向全体,通过第二个题给予学生进一步观察比较的机会,学生自己总结、归纳、思考,此时学生的思维活跃,易于充分发挥学生的学习主动性,同时也培养了学生分析问题的`能力,达到能力培养的目标。

  师:通过以上两个题目,请同学们想一想两个有理数相减的法则是什么?学生活动:同学们思考,并要求同桌同学相到叙述,互相纠正补充,然后举手回答,其他同学思考准备更正或补充。

  师:出示有理数减法法则:减去一个数,等于加上这个数的相反数。(板书)教师强调法则:

  (1)减法转化为加法,减数要变成相反数。

  (2)法则适用于任何两有理数相减。

  (3)用字母表示一般形式为:。

  教法说明

  结合引入新课中温度计的实例,进一步验证了有理数的减法法则的合理性,同时向学生指出了有理数减法的实际意义。从而使学生体会到数学来源于实际,又服务于实际。

  3、例题讲解:

  [出示投影1 (例题1、2)]

  例1 计算(1)(-3)-(-5); (2)0-7;

  例2 计算(1)7.2-(-4.8);(2)()-。

  例1是由学生口述解题过程,教师板书,强调解题的规范性,然后师生共同总结解题步骤:

  (1)转化,

  (2)进行加法运算。

  例2两题由两个学生板演,其他学生做在练习本上,然后师生讲评。

  教法说明学生口述解题过程,教师板书做示范,从中培养学生严谨的学风和良好的学习习惯。例1(2)题是0减去一个数,学生在开始学时很容易出错,这里作为例题是为引起学生的重视。例2两题是简单的变式题目,意在说明有理数减法法则不但适用于整数,也适用于分数、小数,即有理数。

  师:组织学生自己编题,学生回答。

  教法说明教师与学生以平等身份参与教学,放手让学生自己编拟有理数减法的题目,其目的是让学生巩固怕学知识。这样做,一方面可以活跃学生的思维,培养学生的表达能力。另一方面通过出题,相互解答,互相纠正,能增强学生学习的主动性和参与意识。同时,教师可以获取学生掌握知识的反馈信息,对于存在的问题及时回授。

  (三)尝试反馈,巩固练习

  师:下面大家一起看一组题。

  [出示投影2 (计算题1、2)]

  1、计算(口答)

  (1)6-9; (2)(+4)-(-7); (3)(-5)-(-8);

  (4)(-4)-9 (5)0-(-5); (6)0-5。

  2、计算

  (1)(-2.5)-5.9; (2)1.9-(-0.6);

有理数教案13

  一、 教学目标

  1、 知识与技能目标

  掌握有理数乘法法则,能利用乘法法则正确进行有理数乘法运算。

  2、 能力与过程目标

  经历探索、归纳有理数乘法法则的过程,发展学生观察、归纳、猜测、验证等能力。

  3、 情感与态度目标

  通过学生自己探索出法则,让学生获得成功的喜悦。

  二、 教学重点、难点

  重点:运用有理数乘法法则正确进行计算。

  难点:有理数乘法法则的探索过程,符号法则及对法则的理解。

  三、 教学过程

  1、 创设问题情景,激发学生的求知欲望,导入新课。

  教师:由于长期干旱,水库放水抗旱。每天放水2米,已经放了3天,现在水深20米,问放水抗旱前水库水深多少米?

  学生:26米。

  教师:能写出算式吗?学生:……

  教师:这涉及有理数乘法运算法则,正是我们今天需要讨论的'问题

  2、 小组探索、归纳法则

  (1)教师出示以下问题,学生以组为单位探索。

  以原点为起点,规定向东的方向为正方向,向西的方向为负方向。

  ① 2 ×3

  2看作向东运动2米,×3看作向原方向运动3次。

  结果:向 运动 米

  2 ×3=

  ② -2 ×3

  -2看作向西运动2米,×3看作向原方向运动3次。

  结果:向 运动 米

  -2 ×3=

  ③ 2 ×(-3)

  2看作向东运动2米,×(-3)看作向反方向运动3次。

  结果:向 运动 米

  2 ×(-3)=

  ④ (-2) ×(-3)

  -2看作向西运动2米,×(-3)看作向反方向运动3次。

  结果:向 运动 米

  (-2) ×(-3)=

  (2)学生归纳法则

  ①符号:在上述4个式子中,我们只看符号,有什么规律?

  (+)×(+)=( ) 同号得

  (-)×(+)=( ) 异号得

  (+)×(-)=( ) 异号得

  (-)×(-)=( ) 同号得

  ②积的绝对值等于 。

  ③任何数与零相乘,积仍为 。

  (3)师生共同用文字叙述有理数乘法法则。

  3、 运用法则计算,巩固法则。

  (1)教师按课本P75 例1板书,要求学生述说每一步理由。

  (2)引导学生观察、分析例子中两因数的关系,得出两个有理数互为倒数,它们的积为 。

  (3)学生做练习,教师评析。

  (4)教师引导学生做例题,让学生说出每步法则,使之进一步熟悉法则,同时让学生总结出多因数相乘的符号法则。

有理数教案14

  教学目标

  1.理解有理数乘法的意义,掌握有理数乘法法则中的符号法则和绝对值运算法则,并初步理解有理数乘法法则的合理性;

  2.能根据有理数乘法法则熟练地进行有理数乘法运算,使学生掌握多个有理数相乘的积的符号法则;

  3.三个或三个以上不等于0的有理数相乘时,能正确应用乘法交换律、结合律、分配律简化运算过程;

  4.通过有理数乘法法则及运算律在乘法运算中的运用,培养学生的运算能力;

  5.本节课通过行程问题说明法则的合理性,让学生感知到数学知识来源于生活,并应用于生活。

  教学建议

  (一)重点、难点分析

  本节的教学重点是能够熟练进行运算。依据法则和运算律灵活进行有理数乘法运算是进一步学习除法运算和乘方运算的基础。运算和加法运算一样,都包括符号判定与绝对值运算两个步骤。因数不包含0的乘法运算中积的符号取决于因数中所含负号的个数。当负号的个数为奇数时,积的符号为负号;当负号的个数为偶数时,积的符号为正数。积的绝对值是各个因数的绝对值的积。运用乘法交换律恰当的结合因数可以简化运算过程。

  本节的难点是对法则的理解。法则中的“同号得正,异号得负”只是针对两个因数相乘的情况而言的。乘法法则给出了判定积的符号和积的绝对值的方法。即两个因数符号相同,积的符号是正号;两个因数符号不同,积的符号是负号。积的绝对值是这两个因数的绝对值的积。

  (二)知识结构

  (三)教法建议

  1.有理数乘法法则,实际上是一种规定。行程问题是为了了解这种规定的合理性。

  2.两数相乘时,确定符号的依据是“同号得正,异号得负”.绝对值相乘也就是小学学过的算术乘法.

  3.基础较差的同学,要注意乘法求积的符号法则与加法求和的符号法则的区别。

  4.几个数相乘,如果有一个因数为0,那么积就等于0.反之,如果积为0,那么,至少有一个因数为0.

  5.小学学过的乘法交换律、结合律、分配律对有理数乘法仍适用,需注意的'是这里的字母a、b、c既可以是正有理数、0,也可以是负有理数。

  6.如果因数是带分数,一般要将它化为假分数,以便于约分。

  教学设计示例

  (第一课时)

  教学目标

  1.使学生在了解意义基础上,理解有理数乘法法则,并初步理解有理数乘法法则的合理性;

  2.通过运算,培养学生的运算能力;

  3.通过教材给出的行程问题,认识数学来源于实践并反作用于实践。

  教学重点和难点

  重点:依据法则,熟练进行运算;

  难点:有理数乘法法则的理解.

  课堂教学过程 设计

  一、从学生原有认知结构提出问题

  1.计算(-2)+(-2)+(-2).

  2.有理数包括哪些数?小学学习四则运算是在有理数的什么范围中进行的?(非负数)

  3.有理数加减运算中,关键问题是什么?和小学运算中最主要的不同点是什么?(符号问题)

  4.根据有理数加减运算中引出的新问题主要是负数加减,运算的关键是确定符号问题,你能不能猜出在有理数乘法以及以后学习的除法中将引出的新内容以及关键问题是什么?(负数问题,符号的确定)

  二、师生共同研究有理数乘法法则

  问题1 水库的水位每小时上升3厘米,2小时上升了多少厘米?

  解:3×2=6(厘米) ①

  答:上升了6厘米.

  问题2 水库的水位平均每小时下降3厘米,2小时上升多少厘米?

  解:-3×2=-6(厘米) ②

  答:上升-6厘米(即下降6厘米).

  引导学生比较①,②得出:

  把一个因数换成它的相反数,所得的积是原来的积的相反数.

  这是一条很重要的结论,应用此结论,3×(-2)=?(-3)×(-2)=?(学生答)

  把3×(-2)和①式对比,这里把一个因数“2”换成了它的相反数“-2”,所得的积应是原来的积“6”的相反数“-6”,即3×(-2)=-6.

  把(-3)×(-2)和②式对比,这里把一个因数“2”换成了它的相反数“-2”,所得的积应是原来的积“-6”的相反数“6”,即(-3)×(-2)=6.

  此外,(-3)×0=0.

  综合上面各种情况,引导学生自己归纳出有理数乘法的法则:

  两数相乘,同号得正,异号得负,并把绝对值相乘;

  任何数同0相乘,都得0.

  继而教师强调指出:

  “同号得正”中正数乘以正数得正数就是小学学习的乘法,有理数中中特别注意“负负得正”和“异号得负”.

  用有理数乘法法则与小学学习的乘法相比,由于介入了负数,使乘法较小学当然复杂多了,但并不难,关键仍然是乘法的符号法则:“同号得正,异号得负”,符号一旦确定,就归结为小学的乘法了.

  因此,在进行有理数乘法时,需要时时强调:先定符号后定值.

  三、运用举例,变式练习

  例1 计算:

  例2 某一物体温度每小时上升a度,现在温度是0度.

  (1)t小时后温度是多少?

  (2)当a,t分别是下列各数时的结果:

  ①a=3,t=2;②a=-3,t=2;

  ②a=3,t=-2;④a=-3,t=-2;

  教师引导学生检验一下(2)中各结果是否合乎实际.

  课堂练习

  1.口答:

  (1)6×(-9); (2)(-6)×(-9); (3)(-6)×9; (4)(-6)×1;

  (5)(-6)×(-1); (6) 6×(-1); (7)(-6)×0; (8)0×(-6);

  2.口答:

  (1)1×(-5); (2)(-1)×(-5); (3)+(-5);

  (4)-(-5); (5)1×a; (6)(-1)×a.

  这一组题做完后让学生自己总结:一个数乘以1都等于它本身;一个数乘以-1都等于它的相反数.+(-5)可以看成是1×(-5),-(-5)可以看成是(-1)×(-5).同时教师强调指出,a可以是正数,也可以是负数或0;-a未必是负数,也可以是正数或0.

  3.当a,b是下列各数值时,填写空格中计算的积与和:

  4.填空:

  (1)1×(-6)=______;(2)1+(-6)=_______;

  (3)(-1)×6=________;(4)(-1)+6=______;

  (5)(-1)×(-6)=______;(6)(-1)+(-6)=_____;

  (9)|-7|×|-3|=_______;(10)(-7)×(-3)=______.

  5.判断下列方程的解是正数还是负数或0:

  (1)4x=-16; (2)-3x=18; (3)-9x=-36; (4)-5x=0.

  四、小结

  今天主要学习了有理数乘法法则,大家要牢记,两个负数相乘得正数,简单地说:“负负得正”.

  五、作业

  1.计算:

  (1)(-16)×15; (2)(-9)×(-14); (3)(-36)×(-1);

  (4)100×(-0.001); (5)-4.8×(-1.25); (6)-4.5×(-0.32).

  2.计算:

  3.填空(用“>”或“<”号连接):

  (1)如果 a<0,b<0,那么 ab ________0;

  (2)如果 a<0,b<0,那么ab _______0;

  (3)如果a>0时,那么a ____________2a;

  (4)如果a<0时,那么a __________2a.

  探究活动

  问题: 桌上放7只茶杯,杯口全部朝上,每次翻转其中的4只,能否经过若干次翻转,把它们翻成杯口全部朝下?

  答案: “±1”将告诉你:不管你翻转多少次,总是无法使这7只杯口全部朝下.道理很简单,用“+1”表示杯口朝上,“-1”表示杯口朝下,问题就变成:“把7个+1每次改变其中4个的符号,若干次后能否都变成-1?”考虑这7个数的乘积,由于每次都改变4个数的符号,所以它们的乘积永远不变(为+1).而7个杯口全部朝下时,7个数的乘积等于-1,这是不可能的.

  道理竟是如此简单,证明竟是如此巧妙,这要归功于“±1”语言.

有理数教案15

  教学目标

  知识与技能:

  熟记有理数的减法法则,能熟练进行有理数减法运算。

  过程与方法:

  1.借助求温差的过程,探索有理数减法的法则,发展逻辑思维能力;

  2.经历减法化成加法的过程,体验、熟悉 的思想方法,提高思维品质。

  情感态度价值观:

  4.通过同学之间的合作与交流,经历观察、比较、推断、归纳形成一般规律的过程,体验数学规律探索的过程,逐步形成数学探究的积极态度。

  教学重、难点

  重点:有理数减法法则和运算

  难点及突破:有理数减法法则的推导

  教学用具

  多媒体

  教学过程设计

  一、导入

  我们经常会遇到一个数量比另一个数量多多少的运算,这时用什么运算?

  生:减法

  师:今天我们一起来学习有理数的减法!

  二、一起研究

  下表是中央气象台发布的20xx年1月28日天气预报中部分城市的和最低气温统计表

  城市/°C最低气温/°C

  昆明92

  杭州6-2

  北京-2-12

  温差怎么表示?(温差=-最低气温)

  1.那么怎么表示这一天的温差呢?学生填表回答

  城市表示温差的算式观察到的.温差/°C

  昆明9-27

  杭州

  北京

  结论:昆明的温差可表示成9-2=7°C

  杭州的温差可表示成6-(-2)=8°C

  北京的温差可表示成-2-(-12)=10°C

  2.现在我们来看这样一组算式,填空:

  9+________=7; 6+______=8; -2+_______=10.

  3.比较:9-2=7 9+(-2)=7

  6-(-2)=8 6+2=8

  -2-(-12)=10 -2+(+12)=10

  思考:比较上述式子,你有什么结论?两个算式一个加法,一个减法,结果却相同。

  怎样把加法转化为减法运算?

  法则:减去一个数,等于加上这个数的相反数。

  4.对于6-(-2)=8,我们可以这样成6°C比0°C高6°C,而0°C比-2°C又高2°C。你能解释第三个问题中各个算式表示的实际意义么?

  例1(略)

  注意:减法转化为加法时,减数一定要改变符号

  例2 (略)

  三、练习:

  P28 1、2

  四、小结

  1.理解有理数减法运算的法则。

  2.熟悉有理数减法运算的两个步骤

  3.有理数的基本概念及加减运算,都渗透着数学上重要的化归思想。

  五、板书设计

  1.6 有理数减法

  1.减法法则:减去一个数,等于加上这个数的相反数

  a-b=a+(-b)

  2.例

【有理数教案】相关文章:

有理数的乘方教案03-25

有理数的加法教案08-08

《有理数》教案设计10-26

《有理数加法》说课稿07-02

有理数加法说课稿01-18

有理数加法教学反思04-22

有理数乘法的教学反思范文(精选3篇)02-13

七年级数学有理数乘方说课稿02-22

教案中班教案09-30