当前位置:范文网>教学资料>教学反思>《圆的面积》教学工作反思

《圆的面积》教学工作反思

时间:2024-08-21 07:29:25 教学反思 我要投稿
  • 相关推荐

《圆的面积》教学工作反思

  随着社会一步步向前发展,教学是重要的任务之一,所谓反思就是能够迅速从一个场景和事态中抽身出来,看自己在前一个场景和事态中自己的表现。那么优秀的反思是什么样的呢?下面是小编整理的《圆的面积》教学工作反思,欢迎大家借鉴与参考,希望对大家有所帮助。

《圆的面积》教学工作反思

《圆的面积》教学工作反思1

  圆是小学阶段学习的最后一个平面图形,学生认识直线图形,到认识曲线图形,不论是学习资料的本身,还是研究问题的方法,都有所变化,是学习上的一次飞跃。

  透过对圆的研究,使学生认识到研究曲线图形的基本方法,同时渗透了曲线图形与直线图形的关系。这样不仅仅扩展了学生的知识面,而且从空间观念来说,进入了一个新的领域。因此,透过对圆有关知识学习,不仅仅加深学生对周围事物的理解,激发学习数学的兴趣,也为以后学习圆柱,圆锥打下基础。

  一、感受圆的周长与面积的不一样

  本课开始,我先让学生比较圆的周长与圆的面积有什么不一样,之后结合回忆平行四边形的探究方法,引导学生发现“转化”是探究新的数学知识、解决数学问题的好方法,为下方探究圆的面积计算的方法奠定基础。

  二、学具演示,激发探究

  透过以前推导平行四边形面积计算的方法,探究圆的面积。探究之前,我问学生:如何计算圆的面积?学生有点不知所措。此刻回想起来,我不就应一上来就问如何计算圆的面积,而就应先让学生猜测圆的面积可能与什么有关,当学生猜测出圆的面积可能与圆的半径有关系时,这样的引入可能更有利于学生解答出我的问题。接下来我让学生把自我手中的小图片分成若干小扇形,从8等份、16等份再到32等份,学生把扇形拼起来,从一个不规则图形,到近似的一个长方形。再让学生在这个长方形中找到圆的周长,找到圆的半径。最后得到长方形的长就等于圆的周长的一半,而它的宽就是圆的半径,最终推导出圆的面积公式。(遗憾的是学生自我制作的学具操作起来很不方便,既耽误时光,又不规范,如果能统一配置学具那会更利于操作。)学生思维在交流中碰撞,在碰撞中发散,在想象中得以提升。思维的能动性和创造性得到充分激发,探索潜力、分析问题和解决问题的潜力得到了提高。但值得反思的是,我总是抱着一节课就应解决一个知识点的想法,所以为了赶时光,我总是更多的关注举手发言的优等生,而很少注意学困生,没给他们留有足够思考时光,这是我今后课堂教学就应个性注意的地方。

  三、分层练习,体验运用价值

  结合课本中的例题,我设计了基础练习、提高练习两个层次,从两个不一样的层应对学生的`学习状况进行检测。第一,基础练习巩固计算公式的运用,强调规范的书写格式;第二,提高练习收集了身边的实际资料,让这节课所学的资料联系生活,得到灵活运用。在每一道练习题的设置上,都有不一样的目的性,我注重了每个练习的指导侧重点。但在整个练习过程中我没能做到充分发挥主导作用,体现学生的主体地位,引导学生自觉地参与解决问题的过程中来。今后教学中应关注学生的参与程度,知识的掌握程度,促进学生主动发展,提高课堂教学效果。

  在这一节课中,我总觉得操作学具时光短,我有点操之过急,只是让学生草草地操作,更多的是通过自我的教具操作来引导学生观察,比较、分析,发现圆的面积、周长、半径和拼成的近似长方形面积、长、宽之间的关系,从而推导出圆的面积计算公式。学生的思维在交流中虽有碰撞,但总觉得不够。在以后这一类的教学中,就应给学生足够的思考空间和探索时光,使学生的思维的能动性和创造性得到充分激发,探索潜力、分析问题和解决同题的潜力得到充分提高。另外,在细节的设计还要精心安排。

《圆的面积》教学工作反思2

  圆是小学阶段最终的一个平面图形,学生从学习直线图形的认识,到学习曲线图形的认识,不论是学习资料的本身,还是研究问题的方法,都有所变化,是学习上的一次飞跃。

  经过对圆的研究,使学生认识到研究曲线图形的基本方法,同时渗透了曲线图形与直线图形的关系。这样不仅仅扩展了学生的知识面,并且从空间观念来说,进入了一个新的领域。所以,经过对圆有关知识学习,不仅仅加深学生对周围事物的理解,激发学习数学的兴趣,也为以后学习圆柱,圆锥和绘制简单的统计图打下基础。这节课中,我渗透了曲线图形与直线图形的关系,即化曲为直的思想。本节课,我认为我主要有以下几个亮点:

  一、故事激趣,渗透“转化”重视自主探究,发挥学生主体性。

  教学“圆的面积”计算公式推导时,故事激趣,渗透“转化”我先让学生回忆学过的平面图形面积的推导方法,引导学生进行知识迁移,能不能运用割补的方法把圆割补拼成学过的平行四边形、三角形等平面图形,来推导出圆的面积计算公式呢,然后留给学生充分的时间和空间,让学生小组合作动手、动脑剪一剪、拼一拼,再把圆转化成学过的平面图形。再引导学生交流、验证自我的推导想法,师生共同倾听并确定学生汇报圆的面积公式的推导过程,看看他们的推导方法是否科学、合理,使学生们经历操作、验证的学习过程。这样有序的学习,提高了学生的实践本事和创新意识。

  二、大胆猜测,激发探究

  在凸现圆的面积的意义以后,我让学生猜测圆的面积可能与什么有关。当学生猜测出圆的面积可能与圆的半径有关系时,设计实验验证:以正方形的边长为半径画一个圆,用数方格的方法计算出圆的面积,探索圆的面积大约是正方形面积的几倍。这一资料是旧教材所没有的。学生的好奇心、求知欲被充分调动起来,而这些,又正好为他们随后进一步展开探究活动作好了“预埋”。明确了概念,认识圆的面积之后,自然是想到该如何计算图的面积?公式是什么?怎样发现和推导圆的面积公式?这些都是摆在学生面前的一系列现实的问题。此时的学生可能一片茫然,也可能会有惊人的发现,不管怎样都要鼓励学生大胆的猜测,设想,说出他们预设的方案?你打算怎样计算圆的面积?课堂上根据学生的反映随机处理,估计大部分学生会不得要领,即使明白,也能够让大家共同经历一下公式的发现之路。此时,由于学生的年龄小,不能和以前的平面图形建立联系,这就需要教师的引导,以前学过哪些平面图形?让学生迅速回忆,调动原有的知识储备,为新知的“再创造”做好知识的准备。

  根据学生的`回答,选取其中的三个平面图形:平行四边形,三角形,梯形。让学生讨论并再现面积公式的推导过程。根据学生的回答,电脑配合演示,给学生视觉的刺激。平行四边形是经过长方形推导的,三角形面积公式是经过两个完全一样的三角形拼成平行西边形推导的,梯形也是如此。想个过程不是仅仅为了回忆,而是经过这一环节,渗透一种重要的数学思想,那就是转化的思想,引导学生抽象概括出:新的问题能够转化成旧的知识,利用旧的知识解决新的问题。从而推及到圆的面积能不能转化成以前学过的平面图形!如果能,我能够很容易发现它的计算方法了。经过这样的抽象和概括出问题的本质,因为知识的本身并不重要,重要的是数学思想的方法,那才是数学的精髓

  三、演示操作,加深理解

  学生经过第一个操作活动,得出圆的面积是半径平方的3倍多一些,与学生谈话:刚才经过数方格的方法我们研究出圆的面积是半径平方的3倍多一些,那么怎样才能精确的计算出圆的面积呢?让我们来做个实验。每个同学手中都有一个圆,此刻平均分成16份,自我拼拼看,能拼成什么图形?并想想它与圆有怎样的,样,经过学生操作学具,把抽象思维物化为动作形象思维,让学生多种感官参与,贴合学生的认知水平。经过观察,比较、分析,发现圆的面积、周长、半径和拼成的近似长方形面积、长、宽之间的关系,让学生推导出圆的面积计算公式。平行四边形面积学生都会计算:s=ah引导学生观察平行四边形的底和高与圆有什么样的关系:发现a=c、2=πrh=r,平行四边形的面积=圆的面积,从而推导出S平=s圆=π×r×r=πr2。此时,让学生观察思考,利用手中的16等份的图形纸片,拼一拼,还能拼成哪些图形?充分发挥学生的自主能动性,小组合作,共同探究。并根据拼成的图形,推导圆的面积公式。当然,还能拼成三角形,梯形,长方形等,那里课件没有一一演示,而是留给学生充分的空间,让学生自由创新这样由扶到放,由现象到本质地引导,又使学生始终参与到如何把圆转化为长方形(三角形、梯形)的探索活动中来。学生思维在交流中

  碰撞,在碰撞中发散,在想象中得以提升。思维的能动性和创造性得到充分激发,探索本事、分析问题和解决同题的本事得到了提高。

《圆的面积》教学工作反思3

  《圆的面积》是九年制义务教育六年级的教材。圆是小学阶段最终的一个平面图形,学生从学习直线图形的认识,到学习曲线图形的认识,不论是学习资料的本身,还是研究问题的方法,都有所变化,是学习上的`一次飞跃。

  经过对圆的研究,使学生认识到研究曲线图形的基本方法,同时渗透了曲线图形与直线图形的关系。这样不仅仅扩展了学生的知识面,并且从空间观念来说,进入了一个新的领域。所以,经过对圆有关知识学习,不仅仅加深学生对周围事物的理解,激发学习数学的兴趣,也为以后学习圆柱,圆锥和绘制简单的统计图打下基础。

  一.明确概念圆的面积是在圆的周长的基础上进行教学的,周长和面积是圆的两个基本概念,学生必须明确区分。=πrh=r,平行四边形的面积=圆的面积,从而推导出S=πS=π×r×r=πr2。

  此时,让学生观察思考,利用手中的16等份的图形纸片,拼一拼,还能拼成哪些图形?充分发挥学生的自主能动性,小组合作,共同探究。并根据拼成的图形,推导圆的面积公式。当然,还能拼成三角形,梯形,长方形等,那里课件没有一一演示,而是留给学生充分的空间,让学生自由创新。正如《画》谈“马一角”的文字,“看似未曾着墨处,烟波浩渺满日前。”结合学生拼成的图形并推导,采用不完全归纳法,发现都推导出S=πr2,经过实验操作,经历公式的推导过程,不但使学生加深对公式的理解,并且还能有效的培养学生的逻辑思维本事和勇于探索的科学精神,学生在求知的过程中体会到数形结合的内在美,品尝到成功的喜悦。

【《圆的面积》教学工作反思】相关文章:

圆的面积教学反思02-11

《圆的面积》教学设计与反思10-17

《圆的面积计算》教学反思07-17

圆的面积教案07-01

圆的面积教学设计11-14

圆的面积教学设计01-06

圆的面积教案10篇09-07

圆的面积教案经典[15篇]07-31

【精华】圆的面积教案三篇11-07